FocusOn Neurology
  • Biozone
  • Multiple Sclerosis
  • Migraine Research Library
  • LGS & Dravet Syndrome
  • Tardive Dyskinesia
  • Myasthenia Gravis
  • Neurofibromatosis
  • hATTR-PN
  • MDA 2024
  • CIDP Awareness Month
  • Alzheimer's Awareness Month
  • Anticoagulation Reversal Knowledge & Learning Center
  • PNS 2024 Annual Meeting Highlights
  • Parkinson's Disease
  • Multiple Sclerosis
  • Migraine Research Library
  • LGS & Dravet Syndrome
  • Tardive Dyskinesia
  • hATTR-PN
  • CIDP Awareness Month
  • Alzheimer's Awareness Month
  • Anticoagulation Reversal Knowledge & Learning Center
  • PNS 2024 Annual Meeting Highlights

Advanced Search

Advanced Search

  • Featured:
  • Biozone
  • Myasthenia Gravis
  • Neurofibromatosis
  • MDA 2024
  • Parkinson's Disease

Single-Cell Transcriptomics Identifies a Prominent Role for the MIF-CD74 Axis in Myasthenia Gravis Thymus

Mar-25

Share:
Back to Myasthenia Gravis Peer-reviewed articles

Read Full Article

Abstract

Background and Objectives

Myasthenia gravis (MG) is an autoimmune disease most frequently caused by autoantibodies (auto-Abs) against the acetylcholine receptor (AChR) located at the neuromuscular junction. Thymic follicular hyperplasia is present in most of the patients with early-onset AChR-Ab+ MG (EOMG), but its cellular and molecular drivers and development remain poorly understood.

Methods

We constructed a single cell-based transcriptional profile of lymphoid cell types in thymi from 11 immunotherapy-naïve patients with EOMG. Multiplex histology and ELISA were used to determine migration inhibitory factor (MIF) levels.

Results

Within EOMG thymi, we consistently observed 6 distinct clusters of B-cell populations maturing toward germinal center (GC)–associated and Ab-secreting cells, featuring prominent GC activity, as indicated by substantial clonal expansions and cycling B-cell subsets. Cell-cell interactome predictions identified strong interactions between T cells and GC-associated and memory B cells, dominated by B-cell prosurvival signaling through the MIF-CD74 axis. Multiplex histology confirmed abundant expression of CD74 in MG thymic B cells. Circulating MIF levels in EOMG correlated with higher disease severity as assessed by Myasthenia Gravis Foundation of America status.

Discussion

Our data not only illustrate and define hyperplastic thymic niches in MG as favorable environments for pathogenic B-cell proliferation, maturation, and persistence but also suggest that the MIF-CD74 axis should be investigated for potential novel therapeutic targeting in EOMG.

Share

Modal body text goes here.

FocusOn logo
  • Articles
  • Multimedia
  • Blog
  • Resources
  • About FocusOn
  • Privacy Policy
  • Terms of Use

© 2025 Wolters Kluwer. All right reserved.

Your Privacy

To give you the best possible experience we use cookies and similar technologies. We use data collected through these technologies for various purposes, including to enhance website functionality, remember your preferences, show the most relevant content, and show the most useful ads. You can select your preferences by clicking the link. For more information, please review our Privacy and Cookie Policy.

|
|

Cookie Policy

Information about our use of cookies

Wolters Kluwer ("we" or "us") wants to inform you about the ways we process your personal information. In this Privacy & Cookie Notice we explain what personal information we collect, use and disclose.

Personal information means any data relating to an individual who can be identified, directly or indirectly, based on that information. This may include information such as names, contact details, (online) identification data, online identifiers, or other characteristics specific to that individual.

Read More