FocusOn Neurology
  • Biozone
  • Multiple Sclerosis
  • Migraine Research Library
  • LGS & Dravet Syndrome
  • Tardive Dyskinesia
  • Myasthenia Gravis
  • Neurofibromatosis
  • hATTR-PN
  • MDA 2024
  • CIDP Awareness Month
  • Alzheimer's Awareness Month
  • Anticoagulation Reversal Knowledge & Learning Center
  • PNS 2024 Annual Meeting Highlights
  • Parkinson's Disease
  • Epilepsy
  • Multiple Sclerosis
  • Migraine Research Library
  • LGS & Dravet Syndrome
  • Tardive Dyskinesia
  • Neurofibromatosis
  • hATTR-PN
  • MDA 2024
  • CIDP Awareness Month
  • Alzheimer's Awareness Month
  • Anticoagulation Reversal Knowledge & Learning Center
  • PNS 2024 Annual Meeting Highlights
  • Parkinson's Disease
    • Peer-reviewed articles
    • Supplemental educational content
    • Test Your Knowledge

Advanced Search

Advanced Search

  • Featured:
  • Biozone
  • Myasthenia Gravis
  • Epilepsy
 

Personalizing Responsive Neurostimulation for Epilepsy

September 2025 | Journal of Clinical Neurophysiology

Share:
Epilepsy Awareness Month Peer-Reviewed Articles Page

Read Full Article

Abstract

Summary:

Over the past 20 years, responsive neurostimulation (RNS), a closed-loop device for treating certain forms of drug-resistant focal epilepsy, has become ensconced in the epileptologist's therapeutic armamentarium. Through neuromodulatory effects, RNS therapy gradually reduces seizures over years, providing diagnostically valuable intracranial recordings along the way. However, the neuromodulatory potential of RNS therapy has not been fully harnessed. Seizure reduction is often slow, outcomes vary across individuals and defy prognostication, seizure freedom is uncommon, and many patients do not derive significant benefit. These limitations may stem from the “black box” nature of RNS therapy. The antiseizure mechanism(s) of RNS remain poorly understood, and, in the absence of first principles to inform selection of the candidates most likely to benefit, the ideal brain regions to target, and the most effective stimulation parameters, contemporary use of RNS therapy is largely empiric. Fortunately, recent advances in neuroimaging, neurophysiology, artificial intelligence, and engineering have made the goal of rational, personalized neurostimulation a near-term reality. Here, we review recent progress toward this goal, focusing on novel approaches to patient selection, brain network topology, state-dependent effects, and stimulation parameter optimization. By considering the who, where, when, and how of RNS, we highlight emerging paradigm shifts that will help usher in a new age of RNS therapy that is more personalized and more effective.

Share

Modal body text goes here.

FocusOn logo
  • Articles
  • Multimedia
  • Blog
  • Resources
  • About FocusOn
  • Privacy Policy
  • Terms of Use

© 2025 Wolters Kluwer. All right reserved.

Your Privacy

To give you the best possible experience we use cookies and similar technologies. We use data collected through these technologies for various purposes, including to enhance website functionality, remember your preferences, show the most relevant content, and show the most useful ads. You can select your preferences by clicking the link. For more information, please review our Privacy and Cookie Policy.

|
|

Cookie Policy

Information about our use of cookies

Wolters Kluwer ("we" or "us") wants to inform you about the ways we process your personal information. In this Privacy & Cookie Notice we explain what personal information we collect, use and disclose.

Personal information means any data relating to an individual who can be identified, directly or indirectly, based on that information. This may include information such as names, contact details, (online) identification data, online identifiers, or other characteristics specific to that individual.

Read More