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Objective: Diagnosing ocular myasthenia gravis (OMG)
remains challenging despite recent diagnostic advances.
We addressed this challenge by developing and validating
a multivariable prediction model that estimates the OMG
probability given the results of any partial selection of
available diagnostic tests.
Methods: The source data for our model were retrieved from
our blinded prospective diagnostic accuracy study at the
University Hospital Zurich (USZ). Patients with ptosis and/or
diplopia whose presentation was suspicious for OMG
underwent comprehensive diagnostic testing. An indepen-
dent neuromuscular specialist made the final diagnosis.
These data were used to fit and validate a Bayesian network
model against additional retrospective USZ and the Univer-
sity of Toronto (UoT) patient data. The primary outcome was
to predict the likelihood of a positive OMG diagnosis given
the available diagnostic tests. For any set of tests, the
model returns an OMG probability together with 95%
credible intervals, indicating the prediction uncertainty.
Results: Of 89 patients included in the development of the
model, 39 were diagnosed with OMG. Based on our

Bayesian network model, the following variables were the
most useful predictors in descending order: edrophonium
test, acetylcholine receptor (AChR) antibodies), single-fiber
electromyogram (sfEMG), repetitive nerve stimulations
(RNS) facial nerve, RNS accessory nerve, Besinger score,
ice test, sustained upgaze test, dysarthria, dyspnea, dys-
phagia, diplopia, ptosis, age, and sex. The model was val-
idated by determining the mean error rate and the area
under the curve (AUC) by both 10-fold cross-validation and
prediction on the retrospective USZ and UoT validation data
consisting of 69 and 24 patients, respectively. Of all varia-
bles, edrophonium (sensitivity 94%, specificity 90%) and
AChR antibody testing (sensitivity 85%, specificity 96%)
showed the highest predictive value during validation with
an AUC of 0.912 and 0.872, respectively. Incorporating
more predictors reduced the predictive error in both
validation data sets.
Conclusions: Our prediction model serves as a basis to
predict the OMG likelihood. It underwent successful internal
and external validation and can be used to assist in clinical
decision making.
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D iagnosing ocular myasthenia gravis (OMG) remains
a clinical challenge despite recent diagnostic advances.

It is a great mimicker of many ocular motility disorders, and
acetylcholine receptor (AChR) antibody testing, its most
accessible and specific diagnostic biomarker, only demon-
strates a sensitivity of approximately 39%–71%.1–5 Further
ancillary testing, such as the edrophonium test, or electro-
physiologic examinations (repetitive nerve stimulation
(RNS) and single-fiber electromyography (sfEMG) are
often difficult to access and require experienced examiners.6

OMG’s clinical hallmark is fluctuating fatigable and usually
reversible muscle weakness. Hence, the clinical diagnosis of
OMG is challenging due to its variable and undulating symp-
toms. Approximately 80% of myasthenia patients first become
symptomatic with isolated diplopia or ptosis and 50% gener-
alize within 2 years.7 Delayed diagnosis of this treatable disor-
der may lead to preventable life-threatening complications.8

Thus, early diagnosis is paramount not only for ophthalmol-
ogists and neurologists but also for emergency physicians alike.

However, approximately 50% of patients do not receive
the correct diagnosis within the first year of symptoms.9

Therefore, we aimed to address this by developing and
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validating a multivariable prediction model to estimate
OMG probability based on any subset of available tests.
Our model should be applicable in clinical practice to sup-
port the diagnosis of seronegative OMG.

METHODS

Source Data
The data were retrieved from our blinded prospective
diagnostic accuracy study at the Departments of Ophthal-
mology and Neurology, University Hospital Zurich (USZ),
from November 2016 to December 2019 (ClinicalTrials.
gov NCT03049956).10 Informed written consent was ob-
tained from all participants. We developed the multivariable
predictive model using this cohort, following TRIPOD+AI
guidelines.11,12 The studies were approved by the local
ethics committees of Zurich (BASEC-Nr.2016-01109)
and Toronto (Nr.44862) and adhered to the Declaration
of Helsinki. Additional retrospective data of suspected
OMG patients from USZ and a tertiary-level practice affil-
iated with the University of Toronto (UoT) from 2023
were included to validate the model.

Participants
Data from 89 adults from our previous prospective
diagnostic accuracy study with ptosis and/or diplopia
suspicious of OMG were included.10 The goal of this study
was to test the diagnostic accuracy of repetitive ocular ves-
tibular evoked myogenic potentials (roVEMP) to detect
a decrement directly in the extraocular muscle activity as
a novel test for the diagnosis of OMG. For this purpose, the
patients underwent extensive diagnostic testing, including
sustained-upgaze-test, ice pack-test, Besinger score, serum
autoantibodies (AChR, anti-Titin, anti-MuSK, and anti-
LRP4), edrophonium testing, RNS, and sfEMG as a refer-
ence standard for th OMG diagnosis. The final diagnosis
was made by a neuromuscular specialist after three-month
follow-up, including evaluation of any treatment response.

OMG diagnosis in the retrospective USZ and UoT
cohorts was established by experienced neuro-
ophthalmologists (K.P.W., E.A.M.) by using all available
data. Retrospective data from 69 USZ and 24 UoT patients,
including patients with a refuted OMG diagnosis, were
used for external validation. The final diagnosis of OMG
was made in 39, 42, and 23 cases in the prospective USZ,
retrospective USZ, and UoT cohorts, respectively.

Outcome
The multivariable model was designed to predict the
likelihood of OMG diagnosis given the available diagnostic
tests and the patient’s sex and age. The outcome assessment
was blinded as our biostatistician (M.P.F.) was not involved
in data collection or involved in reaching a diagnosis.

Predictors
Model predictors (Table 1) were age, sex, ptosis, diplopia,
sustained upgaze test, ice pack test, AChR antibodies, Be-
singer score, edrophonium test, RNS, and sfEMG. The
continuous variables, “age” and “Besinger score,” were
binned into discrete categories. RNS measurements were
performed twice on both facial and accessory nerves and
were considered positive if any measurement was abnormal.
The predictors were chosen based on clinical experience and
feasibility.13,14

Missing Data
The model was fitted using the complete cases of the
prospective data set. Thus, no data were imputed. The
retrospective USZ and UoT data were allowed to have
missing examinations, in line with the model’s purpose for
use in clinics.

Statistical Analysis
The study data were used to fit a discrete Bayesian network
model15,16 using the R package bnlearn17 (supplemental file
“model_fit.R”). In contrast to regression models, Bayesian
networks represent a joint distribution over all variables.
Consequently, by conditioning the values of any subset of
variables, one can predict the probability of the remaining
ones.15 This allows the model to predict the OMG proba-
bility based on any test combination, even with missing
examinations. Bayesian networks construct their joint dis-
tribution from a set of simpler conditional probability dis-
tributions (CPDs) according to a directed acyclic graph
(DAG, See Supplemental Digital Content, Appendix 1,
http://links.lww.com/WNO/A936).

Internal Model Validation
The fitted model was internally validated by 10-fold cross-
validation based on the error rate (percentage of wrong
classifications) and area under the receiver operator charac-
teristic curve (AUC). Because the error rate depends on the
chosen set of predictors, the validation was performed on
several representative predictor sets. A prediction was con-
sidered positive if the median probability of OMG, given
the considered predictors, was .50%. Only complete data
sets with respect to the selected predictors were considered.

External Model Validation
External model validations were performed with separate
retrospective USZ and UoT data using the same criteria as
for the internal validation. Because these external data were
obtained from clinical practice, they contained incomplete
data sets with fewer diagnostic tests than the study data for
the model. Hence, these data could only be used to evaluate
the model performance on the most common diagnostic
predictors.
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RESULTS

This multivariable prediction model was trained on the
prospective study data10 and validated against retrospec-
tive data from USZ and UoT. Table 1 summarizes the
cases for each predictor variable across the 3 data sets.
The training data included 89 patients of which 39
(44%) diagnosed with OMG. The USZ validation data
included 69 patients with 42 OMG cases (61%), whereas
the UoT comprised 24 patients, with 23 OMG patients
(96%). Note that there were missing values in all 3 data
sets. Moreover, the UoT data sets did not include

Besinger/QMG scores, edrophonium test, RNS, or
sfEMG.

The following variables were the most useful predictors
in descending order: edrophonium test, AChR antibodies,
sfEMG, RNS facial/accessory nerve, Besinger score, ice test,
sustained upgaze test, dysarthria, dyspnea, dysphagia,
diplopia, ptosis, age, and sex. The sensitivity and specificity
of each diagnostic test for OMG was determined from the
counts in Table 1. As expected, edrophonium testing was
highly sensitive (29/31 = 94%) and specific (36/40 = 90%)
in the prospective USZ training data. The USZ validation
data showed a sensitivity of 72% (13/18) and a specificity of

TABLE 1. Detailed counts for all model variables across the training and validation data sets for patients
suspected of having OMG

OMG

Study USZ UoT

Negative
(n = 50)

Positive
(n = 39)

Total
(n = 89)

Negative
(n = 27)

Positive
(n = 42)

Total
(n = 69)

Negative
(n = 1)

Positive
(n = 23)

Total
(n = 24)

Age (0–50)
(50–70)
(70–
120)

15
17
18

10
13
16

25
30
34

5
14
8

8
16
18

13
30
26

0
1
0

3
13
7

3
14
7

Sex Male
Female

18
32

23
16

41
48

13
14

30
12

43
26

1
0

13
10

14
10

Diplopia Negative
Positive

14
36

15
24

29
60

6
21

7
35

13
56

0
1

4
19

4
20

Ptosis Negative
Positive

19
31

10
29

29
60

10
17

14
28

24
45

0
1

4
19

4
20

AChR antibody Negative
Positive

NA

48
2
0

6
33
0

54
35
0

26
0
1

10
32
0

36
32
1

1
0
0

7
16
0

8
16
0

Sustained upgaze
test

Negative
Positive

NA

32
14
4

13
25
1

45
39
5

17
9
1

14
27
1

31
36
2

0
1
0

1
10
12

1
11
12

Ice test Negative
Positive

NA

21
9
20

8
13
18

29
22
38

2
4
21

4
4
34

6
8
55

0
0
1

0
2
21

0
2
22

Besinger/QMG
score

(21 to
1)

(1–4)
(4–8)
(8–24)
NA

5
25
18
2
0

5
14
16
4
0

10
39
34
6
0

0
1
3
0
23

1
9
6
12
14

1
10
9
12
37

Edrophonium Negative
Positive

NA

36
4
10

2
29
8

38
33
18

12
1
14

5
13
24

17
14
38

RNS Negative
Positive

NA

42
8
0

14
23
2

56
31
2

7
0
20

5
1
36

12
1
56

sfEMG Negative
Positive

NA

28
22
0

9
27
3

37
49
3

0
1
26

0
1
41

0
2
67

In the USZ validation data, the QMG score was measured instead of the Besinger score.
AChR antibody, acetylcholine receptor antibody; OMG, ocular myasthenia gravis; QMG, quantitative myasthenia gravis score; RNS,

combined results from repetitive nerve stimulation of accessory and facial nerve; sfEMG, single-fibre electromyography; Study, pro-
spective cohort from the University Hospital Zurich; USZ, retrospective cohort from the University Hospital Zurich; UoT, retrospective cohort
from the University of Toronto.
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92% (12/13). However, in the USZ validation data, the
edrophonium test was only performed in 31 of 69 cases.
The anti-AChR antibody test also displayed high sensitivity
(33/39 = 85%) and specificity (48/50 = 96%) in the train-
ing data. Interestingly, the sensitivity among 18- to 50-year
old patients was markedly lower (6/10 = 60%) than for
those older than 50 years (27/29 = 93%). The sensitivity
was also lower in the validation data (USZ:32/42 = 76%,
UoT:16/23 = 70%) but still significantly above the 40%
and 55% reported in other studies.1,2 The accuracy of the
other tests were much lower. In the training set, the sus-
tained upgaze test had a sensitivity of 66% (25/38) and
a specificity of 70% (32/46). Similarly, sfEMG showed
a sensitivity of 75% (27/36) with a specificity of 56%
(28/50).

An online version of our Bayesian model can be accessed
online: https://myasthenia-prediction.app/(without individ-
ual patient data). Physicians can enter the known clinical
parameters in the appropriate fields, and the estimated
median OMG probability will be displayed with 95% cred-
ible intervals (CI). The prediction uncertainty is visible in 2
ways. First, a higher probability indicates that an OMG
diagnosis is more likely. Second, a tighter CI around the
expected value means the predicted value is more certain.
Our model is designed in a way that a prediction is possible
even with missing clinical parameters. The full model is
accessible online theough the GitHub developer platform
https://github.com/MariusFurter/myasthenia-prediction/
and archived in the EU Open Research Repository
Zenodo.18

The model’s learned CPDs are presented in Table 2 as
95% CIs around the median. For example, the median
probability of a positive edrophonium test, given that the
patient has OMG, was learned to be 91.7%. Moreover, it is
95% certain that this probability lies between 79% and
98%. The corresponding 95% CI is represented as (79.0,
91.7%, 98.0) in the table.

The model was validated by determining the mean error
rate and AUC for several representative predictor sets by 10-
fold cross-validation and prediction on the retrospective
USZ and UoT validation data (Table 3). A case was classi-
fied as OMG positive if the predicted probability
was .50%. Note that with this approach, the uncertainty
information in the CI, which is also a model output, is lost.
Hence, the model could have practical value even for vari-
ables with high error rates by indicating the diagnostic
uncertainty.

In cross-validation, both edrophonium (8.4% error,
0.912 AUC) and anti-AChR-tests (9.2%, 0.872) performed
well individually in predicting OMG. The next best pre-
dictor was RNS (25.2%, 0.767), followed by the ice test
(32.2%, 0.729), sustained upgaze test (33.9%, 0.628), and
sfEMG (39.4%, 0.689). Knowledge of the Besinger score
(47.1%, 0.494) or ptosis and diplopia (49.4%, 0.527) did
not improve prediction above guessing level. This is not

surprising in the case of diplopia and ptosis because these
variables served as inclusion criteria.

The cross-validation results were compared with the pre-
dictive performance on the 2 external validation data sets
from USZ and UoT (Table 3). Generally, the error rates
and AUC in the USZ data mirror those obtained by cross-
validation, although the errors were somewhat higher. For
instance, edrophonium test and AChR antibody tests had
predictive errors of 19.4% and 14.7%, respectively. The
cases where the performance on the USZ validation data
deviated from cross-validation, namely, ice test and RNS are
all associated with low numbers in the validation data set
and should thus be regarded with caution. To assess possi-
ble overfitting, we calculated the mean error and mean
AUC on the training data (Table 3). The results closely
match those obtained in 10-fold cross-validation, demon-
strating that the model does not overfit to the training data.

The predictive errors on the UoT data were much higher
than in cross-validation (Table 3). Even AChR antibody
testing showed 29.2% error rate. However, the UoT data
were a significantly smaller and biased sample with 23/
24 OMG-positive patients. By contrast, the AUC scores,
which are independent of the available number of clinical
variables, were remarkably stable across all validation
approaches.

DISCUSSION

We developed a Bayesian prediction model18 based on
a prospective cohort of patients with suspected OMG
who rigorously underwent all available diagnostic modali-
ties.10 The model underwent internal and external valida-
tion by both 10-fold cross-validation and prediction on
retrospective USZ and UoT validation data. Moreover, it
has a fully comprehensible algorithm and a high level of
flexibility to deal with missing variables. This model is in-
tended to be used online in clinical settings with limited
diagnostic resources to assist in diagnosing seronegative
OMG (https://myasthenia-prediction.app/).

To achieve the goal of an adaptive model, we had to
overcome the obstacle of missing clinical examinations, as
not all tests are usually done in clinical practice. This was
accomplished by jointly modeling all variables using
a Bayesian network, which allows predicting the OMG
probability even with incomplete diagnostic workup.
Therefore, the model should be widely available to
clinicians, who may not have access to sophisticated
ancillary testing. The model can also be helpful because
sfEMG results may be prone to significant interoperator
variability, and studies have reported sensitivity and
specificity rates between 62% to 99% and 66%–98%,
respectively.5,19 Furthermore, contraindications may pro-
hibit certain diagnostic procedures, such as the edropho-
nium test, in case of pulmonary or cardiac comorbidities.
Accordingly, in our retrospective USZ cohort,
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TABLE 2. Conditional probability distribution tables for all model variables (%) for patients suspected of having
OMG
Age distribution 18–50 y 50–70 y 70 y+

19.4, 28.1%, 37.7 24.4, 33.7%, 43.8 28.2, 37.9%, 48.5
Sex ratio Male Female —

36.2, 46.1%, 56.4 43.6, 53.9%, 63.8
OMG Negative Positive

Sex
Male 30.0, 44.0%, 59.2 40.8, 56.0%, 70.0
Female 52.5, 66.2%, 78.4 21.6, 33.8%, 47.5

AChR antibodies Negative Positive
OMG Age
Negative 18–50 y 79.2, 95.8%, 99.9 0.148, 4.17%, 20.8

50–70 y 81.3, 96.2%, 99.9 0.14, 3.77%, 18.7
70 y+ 66.8, 86.1%, 96.6 3.41, 13.9%, 33.2

Positive 18–50 y 16.7, 41.5%, 69.4 30.6, 58.5%, 83.3
50–70 y 1.71, 11.6%, 33.7 66.3, 88.4%, 98.3
70 y+ 1.44, 9.74%, 28.5 71.5, 90.3%, 98.6

Edrophonium Negative Positive
OMG
Negative 76.8, 88.6%, 95.9 4.07, 11.4%, 23.2
Positive 2.02, 8.33%, 21.0 79.0, 91.7%, 98.0

Sustained upgaze test Negative Positive
OMG
Negative 54.9, 68.9%, 80.9 19.1, 31.1%, 45.1
Positive 21.0, 34.6%, 50.5 49.5, 65.4%, 79.0

Ice test OMG Negative Positive
Negative 52.0, 69.2%, 83.4 16.6, 30.8%, 48.0
Positive 20.8, 38.7%, 59.3 40.7, 61.3%, 79.2

sfEMG Negative Positive
OMG
Negative 42.3, 56.0%, 68.9 31.1, 44.0%, 57.7
Positive 13.8, 25.9%, 41.3 58.7, 74.1%, 86.2

RNS Negative Positive
OMG
Negative 71.3, 83.1%, 91.5 8.46, 16.9%, 28.7
Positive 24.0, 38.2%, 54.1 45.9, 61.8%, 76.0

Besinger score (0,1) (1,4) (4,8) (8,24)
OMG Age
Negative 18–50 y 9.82, 25.5%, 47.9 30.8, 52.8%, 74.1 3.67, 14.6%, 34.6 0.13, 3.76%, 18.3

50–70 y 0.105, 3.39%, 16.8 23.3, 42.8%, 63.9 18.9, 37.6%, 59.3 3.10, 13.1%, 31.4
70 y+ 1.19, 7.87%, 23.5 22.0, 40.5%, 61.9 25.5, 45.4%, 66.2 0.117, 3.23%, 16.2

Positive 18–50 y 9.21, 27.5%, 53.6 8.73, 27.6%, 53.8 9.01, 27.5%, 53.1 1.95, 12.6%, 36.7
50–70 y 1.58, 10.3%, 30.4 24.2, 46.7%, 69.7 10.9, 28.7%, 52.2 1.54, 10.4%, 30.0
70 y+ 1.23, 8.64%, 26.7 9.10, 24.3%, 45.8 28.4, 49.7%, 71.0 3.37, 13.7%, 33.4

Diplopia Negative Positive
OMG Age
Negative 18–50 y 29.5, 53.1%, 74.9 25.1, 46.9%, 70.5

50–70 y 9.50, 25.5%, 47.8 52.2, 74.5%, 90.5
70 y+ 3.30, 14.0%, 33.3 66.7, 86.0%, 96.7

Positive 18–50 y 11.3, 32.3%, 60.3 39.7, 67.7%, 88.7
50–70 y 12.9, 32.4%, 57.4 42.6, 67.6%, 87.1
70 y+ 28.3, 50.3%, 72.0 28.0, 49.7%, 71.7

Ptosis Negative Positive
OMG Diplopia
Negative Negative 26.4, 50.0%, 73.6 26.4, 50.0%, 73.6

Positive 19.9, 34.0%, 49.6 50.4, 66.0%, 80.1
Positive Negative 15.0, 34.3%, 58.8 41.2, 65.7%, 85.0

Positive 9.54, 22.4%, 40.9 59.1, 77.6%, 90.5

Each column (except the first 2) represents a CPD p (X j pa(X)) for the variable X indicated in the top row. The possible values for the
parents pa (X) are listed in the leftmost columns. The 3 numbers in each CPD entry summarize a 95% credible interval around the posterior
median in the form (0.025 quantile, median, 0.975 quantile). For instance, in the column for OMG, the entry on the top left represents a 95%
credible interval for the probability of OMG being negative, given that the patient is male.

AChR antibody, acetylcholine receptor antibody; OMG, ocular myasthenia gravis; RNS, combined results from repetitive nerve stimulation
of accessory and facial nerve; sfEMG, single-fibre electromyography.
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edrophonium testing was only performed in 31 of 69 cases
due to contraindications or AChR antibody seropositivity,
which likely explains the lower sensitivity of 72% compared
with the more comprehensive prospective USZ cohort with
a sensitivity of 94%. Regarding the sensitivity of AChR
antibody testing, we found that the sensitivity in patients
below 50 years of age was significantly lower (60%) than in
those over 50 years (93%) - a finding consistent with Peeler
et al3 who reported that the mean age of patients with
positive AChR antibodies was significantly higher than
those with negative test results (61.2 years vs 54.7 years).
The sensitivity was also lower in the validation data (USZ:
76%, UoT: 70%) but still above the 40% and 55% re-
ported in other studies.1,2

In our model, diplopia and ptosis did not have strong
predictive values for diagnosing OMG. Thus, more specific
predictors, such as fatiguability of ptosis or variable diplopia
patterns should be used to refine the model further.
Encouragingly, including more predictors seemed to aid
generalization beyond the training data as seen in the
external validation results. The external Toronto data set
showed higher error rates for several predictors. This likely
reflects the fact that ancillary testing, such as the edropho-
nium test and electrophysiological testing, was not fre-
quently performed. Thus, the diagnosis of seronegative
OMG was made more frequently based on treatment
response. However, we believe this represents a common
real-world scenario and is also represented in the retrospec-
tive USZ cohort to a lesser degree. Importantly, all but 1

case in the UoT data was diagnosed with OMG, represent-
ing a significantly biased sample compared with the USZ
cohort. This also explains why the sustained upgaze test
shows a surprisingly low error of 19.6% in the UoT data.
But again, using several predictors produced estimates with
lower error and higher AUC in both validation data sets.

Other studies developed and validated prediction models
to assess the likelihood of OMG generalization13 or short-
term outcomes for myasthenia gravis in general.20 Although
the first study used an accelerated failure time model, the
latter study tested 14 different machine learning algorithms
to find the best-fitting model, which was a random forest
algorithm in their case. This leads us to the perils of the
increasingly popular machine learning or artificial
intelligence-based models, which ultimately remain a black
box for the user. By contrast, we aimed to derive our model
from medically plausible relationships between the varia-
bles. For this purpose, our Bayesian network model is based
on a DAG (directed acyclic graph) (See Supplemental Dig-
ital Content, Figure 1, http://links.lww.com/WNO/A936)
and allows for a direct evaluation of the model fit based on
the obtained conditional probabilities. We believe that the
comprehensibility of a prediction model is essential for its
acceptance and trustworthiness in clinical practice.

A strength of our model is its development from a data set
of patients with a rigorous prospective workup. Consequently,
there were only very few missing data, this was likely due to
a specific contraindication to performing a diagnostic test.

TABLE 3. Mean error rates and mean area under operator receiver operating characteristic curve (AUC) for
selected predictor sets for training data, 10-fold cross-validation and external validation on the retrospective
USZ and UoT test sets for patients suspected of having OMG

Variables

Training Data
10-Fold

Cross-Validation USZ UoT

Cases
Mean
Error

Mean
AUC Cases

Mean
Error

Mean
AUC Cases

Mean
Error

Mean
AUC Cases

Mean
Error

Mean
AUC

Age, sex 89 39.3% 0.612 89 41.9% 0.64 69 40.9% 0.612 24 61.9% 0.614
Diplopia, ptosis 89 43.5% 0.576 89 49.4% 0.527 69 55.7% 0.496 24 73.5% 0.503
AChR antibodies 89 8.99% 0.906 89 9.2% 0.872 68 14.7% 0.874 24 29.2% 0.879
Sustained upgaze test 84 32.9% 0.678 84 33.9% 0.628 67 35.5% 0.659 12 19.6% 0.655
Ice test 51 34.5% 0.660 51 32.2% 0.729 14 57.0% 0.424 — — —

Besinger score 89 43.6% 0.561 89 47.1% 0.494 32 55.3% 0.551 — — —

Edrophonium 71 8.45% 0.915 71 8.4% 0.912 31 19.4% 0.821 — — —

RNS 87 25.4% 0.732 87 25.2% 0.767 13 38.6% 0.571 — — —

sfEMG 86 37.1% 0.653 86 39.4% 0.689 — — — — — —

Edrophonium, AChR antibodies 71 7.86% 0.975 71 9.1% 0.979 30 20.4% 0.897 — — —

Age, sex, diplopia, ptosis, Sustained
upgaze test

84 31.0% 0.735 84 34.0% 0.707 67 40.1% 0.65 12 34.5% 0.65

Age, sex, diplopia, ptosis, Sustained
upgaze test, AChR antibodies

84 12.5% 0.919 84 14.9% 0.834 66 15.8% 0.909 12 25.0% 0.909

The number of cases that could be used for validation is indicated.
AChR antibody, acetylcholine receptor antibody; QMG, quantitative myasthenia gravis score; RNS, combined results from repetitive nerve

stimulation of accessory and facial nerve; sfEMG, single-fibre electromyography; USZ, retrospective cohort from the University Hospital
Zurich; UoT, retrospective cohort from the University of Toronto.

6 Handzic et al: J Neuro-Ophthalmol 2025; 00: 1-7

Original Contribution

http://links.lww.com/WNO/A936


Some limitations in this study need to be addressed.
First, given the relative rarity of OMG and the study’s pro-
spective nature, our model’s sample size was relatively small.
Thus, to obtain more robust and generalizable data, our
model needs multicentric collaboration to expand its data
set. However, our model was primarily developed as a proof
of concept to find a mathematical solution for a model that
could be useful in a clinical setting, even with missing ex-
aminations. Second, although some predictors representing
symptoms and clinical findings are robust, they are only
generally defined for the model. Including further and more
specific predictors, such as spontaneous fluctuation of dip-
lopia and ptosis over time, as well as Cogan lid twitch, may
further improve the accuracy of our model. Finally, because
these patients were referred to a tertiary care center, our
cohort was likely confounded by a referral bias.

In conclusion, we developed and validated a Bayesian
prediction model based on a rigorous prospective data set
that can be used as a basis to predict the likelihood of OMG.
However, establishing this diagnosis still requires clinical
acumen. However, it can assist in clinical decision making on
whether to diagnose seronegative OMG or consider an
alternative etiology. To refine our model, it needs to be
underpinned with a larger data set in future studies.

STATEMENT OF AUTHORSHIP
Conception and design: A. Handzic, M. P. Furter, K. P. Weber;
Acquisition of data: A. Handzic, B. C. Messmer, M. A. Wirth, Y.
Valko, F. C. Fierz, E. A. Margolin, K. P. Weber; Analysis and
interpretation of data: A. Handzic, M. P. Furter, K. P. Weber. Drafting
the manuscript: A. Handzic, M. P. Furter; Revising the manuscript for
intellectual content: B. C. Messmer, M. A. Wirth, Y. Valko, F. C. Fierz,
E. A. Margolin, K. P. Weber. Final approval of the completed
manuscript: A. Handzic, M. P. Furter, B. C. Messmer, M. A. Wirth, Y.
Valko, F. C. Fierz, E. A. Margolin, K. P. Weber.

REFERENCES
1. Limburg PC, The TH, Hummel-Tappel E, Oosterhuis HJ. Anti-

acetylcholine receptor antibodies in myasthenia gravis. Part 1.
Relation to clinical parameters in 250 patients. J Neurol Sci.
1983;58:357–370.

2. Tindall RS. Humoral immunity in myasthenia gravis:
biochemical characterization of acquired antireceptor
antibodies and clinical correlations. Ann Neurol.
1981;10:437–447.

3. Peeler CE, De Lott LB, Nagia L, Lemos J, Eggenberger ER,
Cornblath WT. Clinical utility of acetylcholine receptor antibody
testing in ocular myasthenia gravis. JAMA Neurol.
2015;72:1170–1174.

4. Valko Y, Rosengren SM, Jung HH, Straumann D, Landau K,
Weber KP. Ocular vestibular evoked myogenic potentials as
a test for myasthenia gravis. Neurology. 2016;86:660–668.

5. Benatar M. A systematic review of diagnostic studies in
myasthenia gravis. Neuromuscul Disord. 2006;16:459–467.

6. Padua L, Stalberg E, LoMonaco M, Evoli A, Batocchi A, Tonali P.
SFEMG in ocular myasthenia gravis diagnosis. Clin
Neurophysiol. 2000;111:1203–1207.

7. Soliven BC, Lange DJ, Penn AS, et al. Seronegative myasthenia
gravis. Neurology. 1988;38:514–517.

8. Alshekhlee A, Miles JD, Katirji B, Preston DC, Kaminski HJ.
Incidence and mortality rates of myasthenia gravis and
myasthenic crisis in US hospitals. Neurology. 2009;72:1548–
1554.

9. Kalb B, Matell G, Pirskanen R, Lambe M. Epidemiology of
myasthenia gravis: a population-based study in Stockholm,
Sweden. Neuroepidemiology. 2002;21:221–225.

10. Valko Y, Wirth MA, Fierz FC, et al. Accuracy of repetitive ocular
vestibular-evoked myogenic potentials to diagnose myasthenia
gravis in patients with ptosis or diplopia. Neurology.
2024;102:e209395.

11. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent
reporting of a multivariable prediction model for individual
prognosis or diagnosis (TRIPOD): the TRIPOD statement. Bmj.
2015;350:g7594.

12. Collins GS, Moons KGM, Dhiman P, et al. TRIPOD+AI
statement: updated guidance for reporting clinical prediction
models that use regression or machine learning methods. Bmj.
2024;385:e078378.

13. Li F, Zhang H, Tao Y, et al. Prediction of the generalization of
myasthenia gravis with purely ocular symptoms at onset:
a multivariable model development and validation. Ther Adv
Neurol Disord. 2022;15:17562864221104508.

14. Kamarajah SK, Sadalage G, Palmer J, Carley H, Maddison P,
Sivaguru A. Ocular presentation of myasthenia gravis: a natural
history cohort. Muscle Nerve. 2018;57:622–627.

15. Darwiche A. Modeling and Reasoning with Bayesian Networks.
Cambridge University Press, 2009.

16. Scutari M, Denis J-B. Bayesian Networks: With Examples in R.
Chapman and Hall/CRC, 2021.

17. Scutari M. Learning Bayesian networks with the bnlearn R
package. arXiv preprint arXiv:09083817. 2009.

18. Furter M. Ocular Myasthenia Prediction Model v1.0.1. Zenodo.
2024. Available at: https://doi.org/10.5281/zenodo.
14789799.

19. Morren JA, Levin KH, Shields RW. Diagnostic accuracy of
single fiber electromyography for myasthenia gravis in patients
followed longitudinally. J Clin Neurophysiol. 2016;33:469–
474.

20. Zhong H, Ruan Z, Yan C, et al. Pan-Yangtze River Delta Alliance
for Neuromuscular Disorders PYDAN. Short-term outcome
prediction for myasthenia gravis: an explainable machine
learning model. Ther Adv Neurol Disord.
2023;16:17562864231154976.

Handzic et al: J Neuro-Ophthalmol 2025; 00: 1-7 7

Original Contribution

https://doi.org/10.5281/zenodo.14789799
https://doi.org/10.5281/zenodo.14789799

