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Abstract  
Cellular senescence and chronic inflammation in response to aging are considered to be indicators 
of brain aging; they have a great impact on the aging process and are the main risk factors 
for neurodegeneration. Reviewing the microglial response to aging and neuroinflammation in 
neurodegenerative diseases will help understand the importance of microglia in neurodegenerative 
diseases. This review describes the origin and function of microglia and focuses on the role of 
different states of the microglial response to aging and chronic inflammation on the occurrence and 
development of neurodegenerative diseases, including Alzheimer’s disease, Huntington’s chorea, and 
Parkinson’s disease. This review also describes the potential benefits of treating neurodegenerative 
diseases by modulating changes in microglial states. Therefore, inducing a shift from the neurotoxic 
to neuroprotective microglial state in neurodegenerative diseases induced by aging and chronic 
inflammation holds promise for the treatment of neurodegenerative diseases in the future.
Key Words: aging; Alzheimer’s disease; cytokines; Huntington’s disease; microglia; neurodegenerative 
diseases; neuroinflammation; neuroprotection; neurotoxicity; Parkinson’s disease

Introduction 
Neurodegeneration is caused by various factors such as aging, oxidative 
stress, inflammation, abnormal protein accumulation, excitotoxicity, and 
metal overexposure followed by neuronal degeneration and death in specific 
regions of the central nervous system (CNS) (Dugger and Dickson, 2017; Chib 
and Singh, 2022). Among these, cellular senescence and chronic inflammation 
in response to aging are considered to be indicators of brain aging, have a 
significant impact on the aging process, and are the main risk factors for 
inducing neurodegeneration (Franceschi and Campisi, 2014; Lasry and Ben-
Neriah, 2015). The primary neurodegenerative diseases commonly seen in 
the older adults are Alzheimer’s disease (AD), Huntington’s disease (HD), and 
Parkinson’s disease (PD) (Hou et al., 2019). These diseases cause cognitive 
decline in patients, significantly affecting their daily lives, and burdening 
their families and society. This burden continues to increase due to the rapid 
aging of the population and limited treatment strategies. Despite the ongoing 
exploration of neurodegenerative diseases, cures for these diseases have yet 
to be found. With advances in the field of genome editing, clustered regularly-
interspaced short palindromic repeat (CRISPR) technology is being considered 
for the treatment of neurodegenerative diseases (Raikwar et al., 2019); 
this plays an essential role in slowing the progression of neurodegenerative 
diseases, such as AD, HD, and PD, by halting or delaying the progression of 
neuroinflammation as well as neurodegeneration (Chitnis and Weiner, 2017; 
Qin et al., 2021). However, as this technique is still under development, 
its clinical effectiveness and safety have not yet been proven. Therefore, 
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the development of effective treatments and interventions to slow the 
progression of the disease is urgent. However, it is essential to consider the 
role of senescence and inflammatory mechanisms in the pathogenesis and 
progression of neurodegenerative diseases to prescribe the correct remedy.

The aging of an organism drives impaired biological function, reduced 
synaptic plasticity, abnormal neuronal activity, dysregulation of neuronal Ca2+ 
homeostasis, and inflammation in brain cells. These changes further impair 
the memory, learning, cognitive exploration, coordination, and motor abilities 
of the organism (Mattson and Arumugam, 2018; Levite, 2023), and contribute 
to neurodegenerative diseases in the aging brain.

Inflammation is a protective mechanism in the body that maintains 
homeostasis in the brain’s internal environment by repairing, regenerating, 
and removing damaged tissues/cells or infection factors, parasites, and toxins 
from the body (Kulkarni et al., 2016; Shi et al., 2023). However, inflammation, 
as a concomitant response to cellular senescence and organismal aging, also 
plays a vital role in promoting organismal aging. During aging, damage to 
the innate and acquired immune systems of the organism occurs, resulting 
in a functional imbalance of the immune system. The engagement of these 
immune systems leads to the clearance of pathogens, damaged tissues, 
and senescent cells, and causing an increase in the expression of pro-
inflammatory cytokines (e.g., tumor necrosis factor-alpha (TNF-α), interleukin 
(IL)-1β, IL-6, IL-8, reactive oxygen species (ROS), C-C motif chemokine ligand 
(CCL)-2, and CCL-5), which promote an inflammatory response (Teissier et 
al., 2022). Chronic stimulation of these factors not only leads to a chronic, 
low-grade, micro-inflammatory senescence state in the organism, but also 
induces neuroinflammation and causes neuronal damage, leading to age-
related neurodegeneration (Kempuraj et al., 2016; Shabab et al., 2017).

Microglia are resident immune cells in the brain. In normal physiological 
states, they can promote brain development, repair cellular damages, protect 
against inflammation, and promote neuronal survival, immune surveillance, 
and neurogenesis, thus maintaining the homeostasis of the brain’s internal 
environment (Sierra et al., 2010; Tremblay et al., 2010; Eyo and Dailey, 
2013; Pierre et al., 2017; Qiu et al., 2023). However, in pathological states, 
microglia are over-activated in response to disease factors, resulting in an 
excessive inflammatory response within the brain (Azam et al., 2021). A 
sustained inflammatory response limits the beneficial functions of microglia 
and exerts neurotoxic effects by increasing the release of inflammatory 
cytokines and inhibiting neural regeneration (Russo and McGavern, 2016). 
More importantly, with the aging process, misfolded proteins, cellular 
debris, and other inflammatory stimuli accumulate in the brain, inducing 
continuous stimulation of the microglia and accelerating the aging process. 
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The increased level of aging in the organism further leads to a decrease in 
the phagocytic potential and surveillance capacity of microglia, triggering 
a vicious cycle that increases the production of inflammatory substances 
harmful to neuronal health (Villa et al., 2016) and promotes the development 
of neurodegenerative diseases (Kim et al., 2022). Therefore, reversing 
neurodegeneration caused by neuroinflammation can effectively mitigate the 
progression of neurodegenerative diseases.

Microglia-mediated neuroinflammation is currently considered a hallmark 
of several CNS diseases. Influencing the functional microglial states is a 
promising method to treat neurodegenerative diseases; however, the 
mechanisms by which microglia influence the developmental progression of 
neurodegenerative diseases caused by senescence and neuroinflammation 
need to be further explored. In this review, we will elucidate the role of 
microglia in aging and inflammation, focusing on the role of microglia in the 
development of neurodegenerative diseases and providing new ideas for the 
treatment of neurodegenerative diseases.

Search Strategy
References for this narrative review were searched from the PubMed 
database. The time frame for the search was 1999–2023 and the 
retrieval  strategies are shown below: (neuroinflammation[Tit le/
Abstract]) AND (drug[Title/Abstract]) AND (microglia[Title/Abstract]) AND 
(“Neurodegeneration”[Title/Abstract]) OR (Parkinson disease[Title/Abstract]) 
OR (Parkinsons[Title/Abstract]) OR (PD[Title/Abstract]) OR (Parkinson’s 
disease[Title/Abstract]) OR (Alzheimer ’s disease[Title/Abstract]) OR 
(“Alzheimers disease”[Title/Abstract]) OR (AD[Title/Abstract]) OR (Huntington’s 
disease[Title/Abstract]) OR (Huntingtons disease[Title/Abstract]) OR (HD[Title/
Abstract]). 

Aging and Inflammation
Cells within the brain respond to aging and external stressors with a decline 
in their normal physiological functions (e.g., substance transport function of 
cell membranes) and proliferative functions, resulting in a disruption of the 
usual cognitive abilities of the organism, which may lead to tissue dysfunction 
and age-related diseases. In the physiological context, senescence plays an 
essential role in development, tissue regeneration, and tissue repair (Storer 
et al., 2013; Mosteiro et al., 2016; Davaapil et al., 2017; Walters and Yun, 
2020). However, with aging, different cellular stressors (e.g., oxidative stress, 
DNA damage, and mitochondrial stress) increase, disrupting the homeostatic 
balance in vivo. Senescent cells exhibit multiple effects and promote tissue 
aging through intrinsic and extrinsic mechanisms. Intrinsically, if the growth 
of senescent cells is stalled in the stem cell compartment, it may impair tissue 
regeneration and promote cellular dysfunction in a non-autonomous manner 
(Ovadya and Krizhanovsky, 2018; Calcinotto et al., 2019). Externally, senescent 
cells accelerate tissue aging by secreting IL-1β, IL-1α, IL-8, IL-6, CCL-2, vascular 
endothelial growth factor (VEGF), transforming growth factor beta (TGF-β), 
fibrinogen activator (PLAT), as well as matrix metalloproteinase (MMP)-1, -3, 
and -10, which constitute the senescence-associated secretory phenotype 
(SASP) (Figure 1; Birch and Gil, 2020). SASP is both a consequence of aging 
and an inducer of aging; senescent cells accelerate their aging process and 
that of their neighbors by autocrine means, resulting in increased SASP and 
modulation of immune surveillance of senescent cells, thus altering the local 
tissue environment and possibly contributing to inflammation (Acosta et 
al., 2008; Krizhanovsky et al., 2008; Kuilman et al., 2008; Ohtani, 2022). In 
addition, SASP contributes to tissue repair and the recovery of damaged cells 
from senescence (Shmulevich and Krizhanovsky, 2021). Since SASP has both 
beneficial and detrimental consequences, it may serve as an effective double-
edged target for pharmacological intervention in human diseases.

The expression of inflammatory mediators is a key feature of aging at the 
cellular and organismal levels. During aging, uncontrolled age-related immune 
detection, combined with the immune evasion of senescent cells, leads to 
a further increase in the number of senescent cells, severely affecting the 
organism’s routine physiological functions (Ovadya et al., 2018; Muñoz et 
al., 2019). Cellular senescence leads to chronic inflammation in tissues via 
two main mechanisms: 1) senescent cells amplify SASP through paracrine 
synergistic effects, thus exacerbating the inflammatory response, or 2) the 
impaired immune function due to senescence leads to the accumulation of 
senescent cells, further exacerbating inflammation (Ovadya and Krizhanovsky, 
2014; Baker and Petersen, 2018). In addition, chronic inflammation 
accelerates organismal aging through oxidative damage, DNA damage, 
and stem cell senescence (Cavanagh et al., 2012; Colombini et al., 2022; 
Buzoglu et al., 2023). The adverse effects of senescence on the innate and 
adaptive immune responses decrease the efficacy of vaccination and increase 
susceptibility to infectious, chronic, autoimmune, and neurodegenerative 
diseases (Castelo-Branco and Soveral, 2014). Therefore, improving chronic 
inflammation caused by aging is beneficial in slowing down the development 
of neurodegenerative diseases.

A study has shown that microglia protect neurons through immunosurveillance 
in normal physiological states and have an irreplaceable role in maintaining 
the homeostasis of the brain’s internal environment (Casano and Peri, 
2015). However, microglial phagocytosis is impaired in response to chronic 
inflammation caused by aging; their neuroprotective state is changed to a 
neurotoxic state via the secretion pro-inflammatory cytokines, leading to 
neuroinflammation, which further promotes increased accumulation of toxic 
proteins and accelerates neurodegeneration (Rawji et al., 2016; Sikora et al., 
2021). Studies in neuroimmunology have shown that modulating the states 
and function of microglia during the aging process can improve inflammation 
(Tang and Le, 2016; Song and Suk, 2017), which is a novel way to slow down 
the development of neurodegenerative diseases.

Role of Microglia in Neurodegenerative Diseases 
Microglia, which are resident macrophages of the CNS, account for 10–15% of 
neuroglia, and are implicated in the pathogenesis of many neurodegenerative 
and inflammatory diseases in the brain (Nayak et al., 2014). Pío del Rıó 
Hortega first proposed that mesodermal cells invade the brain to form 
microglia at the late stage of embryonic development (Hortega, 1918; Del Rio-
Hortega and De Estudios, 1920; Kaur et al., 2017). Despite some controversies 
about whether microglia originate from the mesoderm or the ectoderm 
(Chan et al., 2007; Ginhoux et al., 2013), some researchers still followed Pío 
del Rıó Hortega’s hypothesis and confirmed it by light microscopy analysis 
and immunohistochemistry (Hortega, 1918; Del Rio-Hortega and De Estudios, 
1920; Kaur et al., 2017). In mice, microglia originate from developmentally 
infiltrated yolk sac red medullary lineage progenitors (Ginhoux et al., 2010), 
migrate through the blood circulation to the neuroepithelium, and enter the 
brain parenchyma, forming a blood-brain barrier (BBB) that constitutes a 
unique microenvironment for microglia. 

Microglia are mainly distributed in the spinal cord and brain. As intrinsic 
immune cells in the brain, their function is regulated by several cells (e.g., 
neurons, astrocytes, T cells, and the BBB) (González et al., 2014). In addition, 
microglia constitute the front-line defense of the innate immune system, 
participating in various immune responses by changing morphology and 
migrating to the site of infection (Ransohoff and El Khoury, 2015). For 
example, microglia detect pathogenic agents, remove damaged or apoptotic 
cells, metabolites, and tissue debris (Färber and Kettenmann, 2005), and 
defend against pathogen invasion by immune-inflammatory responses 
(Hickman et al., 2018). Under normal physiological conditions, microglial 
renewal is completed through self-proliferation when the cellular state is 
highly branched (Ajami et al., 2007; Torres-Platas et al., 2014), with tertiary 
and quaternary branching structures and little overlap of intercellular 
branches. They participate in neurogenesis by establishing neuronal circuits 
and maintaining the dynamic balance of the neuronal cell pool (Pierre et al., 
2017). They release cytokines, such as TNF-α and interferon gamma (IFN-γ), 
to regulate communication between neurons and other glial cells, and 
mobilize the activation of other immune cells (e.g., astrocytes) in the brain 
as a means of removing toxic substances (Sierra et al., 2010; Tremblay et al., 
2010; Hansen et al., 2018). They participate in neuronal repair, remodeling, 
synaptic pruning, and support neuronal survival and differentiation, thus 
maintaining the homeostasis of the microenvironment within the brain (Eyo 
and Dailey, 2013). In addition, brain-derived neurotrophic factor (BDNF) 
signaling promotes synapse formation, which is associated with higher 
cognitive functions, such as learning and memory (Parkhurst et al., 2013), and 
participates in the regulatory process of the entire nervous system through 
the terminal phagocytosis of newly apoptotic neurons in the granular cell 
layer of the hippocampal dentate gyrus via the protrusions. When the brain 
microenvironment homeostasis is destroyed, microglial cells will actively 
respond through a change in their morphology, which includes enlarged cell 
bodies, shorter protrudes, and round or rod-shaped cell morphology (Choi et 
al., 2012).

Microglia are traditionally classified according to their functions and features 
in different states: the M1 phenotype, which promotes inflammation, and 
the M2 phenotype, which inhibits inflammation (Guo et al., 2022). However, 
this classification is inconsistent with the wide range of states and functions 
of microglia in development, plasticity, aging, and disease, which have been 
elucidated in recent years. Although this term is still widely used, we should 
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Figure 1 ｜ Multiple effects of senescent cells. 
Senescent cells can accelerate tissue aging by increasing the production of the SASP, 
which can also induce further damage senescent cells and promote the senescence of 
neighboring cells. The left (green) exhibits beneficial effects on the organism, including 
the recruitment of immune cells and tissue remodeling. The right (red) shows the 
deleterious effects on the organism, such as immune escape and inflammation. Created 
with Figdraw. SASP: Senescence-associated secretory phenotype. 
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strictly avoid using M1 and M2 to classify microglia and name them using 
more detailed tools to study their functional state. Current studies suggest 
that microglia exist in different, dynamic, and multidimensional states 
and switch between active states by responding to different factors and 
various microenvironmental changes (Hanisch, 2013; Orihuela et al., 2016; 
Paolicelli et al., 2022). It is believed that microglia are mainly neurotoxic and 
neuroprotective in neurodegenerative diseases (Nizami et al., 2019; Xu et al., 
2023; Figure 2).

damage (Sakae et al., 2016). In conclusion, ABC transporter proteins can 
influence the progression of neurodegenerative diseases by affecting the 
phagocytosis of macrophages.

Neurotoxic microglial-mediated neuroinflammation is a common feature of 
several neurodegenerative diseases. However, neuroprotective microglia 
exert neuroprotective effects by releasing anti-inflammatory mediators 
and alleviate neurotoxic-induced inflammatory effects (Wilms et al., 2003; 
Jetten et al., 2014; Tang and Le, 2016). Therefore, reversing microglial-
mediated neuroinflammation and promoting their neuroprotective effects 
can slow down the development of neurodegeneration and reduce neuronal 
damage. Microglia are a double-edged sword that play an essential role in 
neurodegenerative diseases.

Heterogeneity of Microglia in Different 
Neurodegenerative Diseases 
AD 
AD is a chronic neurodegenerative disease and the most common cause 
of human dementia worldwide (Holtzman et al., 2011; Serrano-Pozo et 
al., 2011). AD patients experience memory loss and difficulties in thinking, 
language, and problem-solving skills. Recent data suggests that the prevalence 
of dementia will double in Europe and triple globally by 2050 (Scheltens et al., 
2021).

Neuropathological features of AD include deposition of extracellular Aβ 
plaques and α-syn, activation of astrocytes/microglia, hyperphosphorylated 
tau protein aggregates within neurons, neuroinflammation, and neuronal 
cell death (Fakhoury, 2018; Shi et al., 2019; Tan et al., 2021). An accurate 
diagnosis of the disease in the early stages of AD is the key to treatment, 
and pharmacological interventions can slow the disease process and reduce 
morbidity (Bjerke and Engelborghs, 2018; Khan et al., 2020). The only 
conclusive way to diagnose AD is to perform a brain autopsy on the patient’s 
brain tissue and determine whether the subject has AD or any other form of 
dementia (Khan et al., 2020). However, the lack of feasibility of this approach 
and the fact that the etiology of most AD patients remains unknown beyond 
the genetic differences poses a significant challenge in slowing or treating 
the disease (Khan et al., 2020). Therefore, it is necessary to understand the 
pathophysiology of AD, grasp the causes of AD, rapidly diagnose AD, and 
identify possible therapeutic targets that can be used to prevent or treat the 
disease to reduce its prevalence and incidence globally.

AD is a complex and heterogeneous disease, and its pathogenesis is closely 
related to age, genetics, and environmental factors (Calderon-Garcidueñas and 
Duyckaerts, 2017; Scheltens et al., 2021). A study assessed the ability of bone 
marrow-derived macrophages in ABCA7-bearing mice to take up oligomeric 
Aβ and demonstrated that ABCA7 deficiency affects the clearance of Aβ by 
microglia (Lee and Landreth, 2010; Li et al., 2015), suggesting that microglia 
play a vital role in the phagocytic clearance of Aβ in the brain. However, the 
balance between Aβ production and clearance determines the Aβ load in 
the AD brain, and excessive Aβ accumulation triggers neuroinflammation 
(Mawuenyega et al., 2010; Colombini et al., 2022). However, ageing further 
increases the deposition of Aβ and tau, which exacerbates neuroinflammation 
and decreases neuronal survival, promoting cognitive decline and 
accelerating the disease process (Mawuenyega et al., 2010; Colombini et al., 
2022). Studies have shown that as the brain ages, microglia in AD patients 
experience increased levels of DNA damage, accelerated telomere shortening, 
and a slowing of the cell cycle (Pierce et al., 2017; Sarlus and Heneka, 2017). 
At the same time, microglia have increased inflammatory activity, impaired 
phagocytosis, and reduced neuronal protection (Pierce et al., 2017; Sarlus and 
Heneka, 2017). In addition, mitochondrial dysfunction and excessive oxidative 
stress are not only important features of brain aging but also contribute 
to early neuronal changes in AD patients (Venkataraman et al., 2022); the 
aggregation of Aβ and tau proteins causes redox imbalance and oxidative 
stress, which accelerates the aggregation of Aβ and tau proteins, forming a 
vicious circle (Zhao and Zhao, 2013). The vicious circle aggravates the damage 
to healthy neurons (Zhao and Zhao, 2013). Thus, excessive oxidative stress 
induced by senescence is involved in the onset and development of AD. 

Furthermore, Aβ accumulation and tau pathologically drive neuronal 
senescence, while specif ic el imination of aging neurons reduces 
neurodegeneration (Guerrero et al., 2021). Most importantly, the 
accumulation of age-related senescent cells in the brain may create an ideal 
pro-inflammatory environment for AD pathogenesis, in which microglia, 
astrocytes, and neurons are involved and participate in the development 
and progression of neuroinflammation through various signaling and injury 
stress responses (Guerrero et al., 2021). Meanwhile, Aβ-induced microglial 
activation and the release of inflammatory cytokines lead to neuronal 
senescence and loss of function (Hu et al., 2019). Therefore, modulating 
neuroinflammation caused by senescence in AD through targeted therapy 
may provide new ideas for treating AD.

In the early stages of AD, microglia slow the progression of AD by releasing 
degradative enzymes to clear Aβ plaques and secrete trophic factors to 
increase tissue repair and maintain homeostasis in the brain, protecting 
damaged neurons (Heneka, 2017; Sarlus and Heneka, 2017). However, in 
the later stages of AD, excessive accumulation of abnormal proteins and 
increased senescence lead to changes in the homeostasis of the brain 
microenvironment, prompting microglia to become more sensitive to 
inflammatory stimuli, which accelerates Aβ plaque formation by secreting 

IL-1β, TNF-α, 

iNOS, NO, ROS, etc.

Neurotoxic effects

Neuroprotection effects
IL-10, Arg-1, CD206,

TGF-β, BDNF, etc.
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Pro-inflammatory reaction
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Neurogenesis
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Figure 2 ｜ The role of microglia in different cellular states. 
Microglia responding to changes in the brain microenvironment can manifest as different 
cellular states. Microglia in a neurotoxic state amplify neuroinflammation by secreting 
pro-inflammatory cytokines, such as IL-1β, TNF-α, iNOS, and chemokines, inducing 
neuronal death, causing neurodegeneration, and exacerbating disease progression. The 
neuroprotective state of microglia results in the release of anti-inflammatory mediators 
and neurotrophic factors, such as IL-10 and Arg-1, to reduce inflammation, protect 
neurons, and promote neuronal repair. Created with Figdraw. Arg-1: Arginine 1; BDNF: 
brain-derived neurotrophic factor; IL: interleukin; iNOS: inducible nitric oxide synthase; 
NO: nitric oxide; ROS: reactive oxygen species; TGF-β: transforming growth factor factor-
beta; TNF-α: tumor necrosis factor-alpha. 

In neurodegenerative diseases, microglia respond to senescence and the 
surrounding environmental stimuli (e.g., lipopolysaccharide, IFN-γ, and 
cellular/bacterial debris) and exert neurotoxic effects that promote the 
development and progression of neuroinflammation by releasing multiple 
pro-inflammatory factors and cytokines, leading to neuronal damage and 
accelerating the progression of neurodegenerative diseases (Wilms et 
al., 2003; Colonna and Butovsky, 2017). As the brain ages, endogenous 
stimuli (aggregated α-synuclein (α-syn), deposited amyloid-β (Aβ), and tau 
oligomers) may lead to an excessive inflammatory response in neurotoxic 
microglia, resulting in irreversible neuronal damage (Tang and Le, 2016). In 
addition, microglia in a neurotoxic state amplify BBB damage by releasing 
pro-inflammatory cytokines and chemokines, such as TNF-α, inducible NOS 
(iNOS), and CCL-5, which in turn promote the conversion of astrocytes to type 
A1 (Liddelow et al., 2017; Wan et al., 2022). After BBB injury, chemokines 
released from microglia induce infiltration of peripheral circulating immune 
cells into the brain, which further amplifies the inflammatory response, 
leading to tissue damage and apoptosis (Kim et al., 2022). In contrast, 
neuroprotective microglia play a role in the allergic response, parasite 
clearance, inflammation suppression, tissue remodeling, immunomodulation, 
and tumor promotion by releasing anti-inflammatory cytokines and trophic 
factors, which support neuronal survival (Sica and Mantovani, 2012; Jetten et 
al., 2014; Tang and Le, 2016). In addition to releasing inflammatory cytokines 
and chemokines, microglia can maintain neuronal microenvironmental 
homeostasis through phagocytosis and the removal of potentially threatening 
substances (Cai et al., 2022). Microglial phagocytosis plays a vital role in 
neurodegenerative diseases. Studies have shown that when microglial 
phagocytosis is impaired, it leads to the abnormal accumulation of Aβ 
proteins in AD, promotes the accumulation of Huntington’s protein in HD, 
and causes an abnormal increase in α-syn in PD (Harry, 2013; Fu et al., 2014; 
Jung and Chung, 2018). These disease-specific protein aggregates lead to 
neuronal death, exacerbating the disease process (Harry, 2013; Fu et al., 
2014; Jung and Chung, 2018). Studies have shown that the expression of ATP-
binding cassette transporter (ABC) is closely linked to microglial phagocytosis, 
a class of ATP-driven pumps that, under normal physiological conditions, are 
widely distributed in the cytoplasmic membranes of organs such as the brain, 
liver, small intestine, and kidney to remove natural toxicants and metabolic 
wastes from body (Mahringer and Fricker, 2016; Sakae et al., 2016). ABCA7 
belongs to the A subfamily of ABC transporter proteins and is involved in the 
efflux of cellular cholesterol and phospholipids in various cell types (Li et al., 
2015). Notably, there is growing evidence that ABCA7 plays a potential role 
in the pathogenesis of neurodegenerative diseases such as late-onset AD 
(Aikawa et al., 2018; Dehghan et al., 2022). ABCA7 deficiency reduces the 
phagocytic capacity of macrophages and impairs the cytokine response of 
natural killer T cells (Tanaka et al., 2010; Nowyhed et al., 2017; Aikawa et al., 
2019). Studies have shown that ABCA7 is highly expressed in microglia (Kim et 
al., 2006), which act as phagocytic cells, and that it may contribute to disease 
development by affecting the phagocytic function of microglia, exacerbating 
the accumulation of abnormal proteins (e.g., Aβ), and accelerating neuronal 
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large amounts of inflammatory cytokines (Hu et al., 2021). In addition, 
microglia exert neurotoxic effects due to changes in their cellular state in 
response to excessive accumulation of Aβ and the surrounding environment, 
which not only fails to remove the abnormally accumulated proteins but 
also further induces Aβ production and promotes the activation of many 
inflammatory pathways (e.g., NOD-like receptor family and pyrin structural 
domain 3-containing (NLRP3) inflammatory vesicles), increasing the release of 
pro-inflammatory cytokines and accelerating neurodegeneration (Venegas et 
al., 2017; Mata-Martínez et al., 2022; Merighi et al., 2022). The accumulation 
of hyperphosphorylated tau protein in neurons is a feature of AD pathology. 
Tau promotes microglia senescence, leading to a reduction in their phagocytic 
function (Brelstaff et al., 2021; Ju and Tam, 2022). Microglia secretes tau 
protein, which aggravates neuronal damage, and also contributes to the 
senescence of neighboring microglia, creating a vicious circle and accelerating 
AD-related pathology (Brelstaff et al., 2021; Ju and Tam, 2022). Notably, in 
late-onset AD, the ABCA7 gene variant, as a susceptibility gene, is not only 
involved in regulating microglia dysfunction during brain aging but also 
in maintaining the immune system homeostasis in vivo, and is involved in 
the pathogenesis of AD through the inflammatory pathway (Aikawa et al., 
2019). By regulating the phagocytosis of Aβ by microglia and thus interfering 
with normal endosomal-lysosomal transport, it leads to the abnormal 
accumulation of Aβ in the microglia and accelerates APP processing, thereby 
exacerbating neuronal damage and promoting AD progression (Aikawa et al., 
2018).

In addition, as the condition worsens, the response to persistent 
inflammation and overexposure to oxidation can also promote microglia to 
switch to the neurotoxic state, leading to neuroinflammation, oxidative stress, 
iron overload, and neurotoxicity, and reducing the release of neurotrophic 
factors, leading to a reduction in the average neuronal number and function, 
promoting the progression of AD (Li et al., 2018; Merighi et al., 2022). Thus, 
microglia have a bidirectional role in the development and progression of 
AD. Therefore, promoting the change of microglia from a neurotoxic to a 
neuroprotective state through drugs or other technical means and regulating 
the balance of their protective effect on neurons and the clearance of Aβ and 
tau may effectively reduce the neuroinflammation of microglia in AD, alleviate 
the pathogenesis of AD, and provide a potential reference for the treatment 
of AD.

HD
HD is an autosomal dominant neurodegenerative disease that affects 
approximately 5–10 per 100,000 people, with onset primarily in adulthood. 
Its clinical manifestations include impaired motor and cognitive function, loss 
of self and spatial awareness, increased depression, dementia, and anxiety, 
behavioral dysfunction, brain atrophy, weight loss, and a shortened life span 
(Georgiou-Karistianis et al., 2013; Labbadia and Morimoto, 2013). At the 
molecular level, HD is a disease caused by the amplification of CAG repeats in 
the huntingtin protein gene, leading to the amplification of the polyglutamine 
region in exon 1. When the number of CAG repeats is expanded from the 
normal population range (on average between 16 and 20 repeats) to > 35 
repeats, the translated polyglutamine-containing mutant huntingtin (mHTT) 
protein forms inclusion bodies that subsequently harms various types of 
brain cells (e.g., neurons, astrocytes, and microglia), leading to alterations in 
transcription, axonal transport, mitochondrial function, vesicular transport, 
inflammation, and oxidative stress, which in turn promote disease progression 
(Shin et al., 2005; La Spada et al., 2011; Munoz-Sanjuan and Bates, 2011). 
The main mechanisms involved in the development of HD are impaired 
vesicular transport of brain-derived neurotrophic factor (Gauthier et al., 
2004), excitotoxicity induced by excessive activation of N-methyl-D-aspartate 
receptors (Fan and Raymond, 2007), transcriptional dysregulation (Steffan 
et al., 2000; Hodges et al., 2006), altered protein deposition (Soares et al., 
2019), mitochondrial dysfunction (Zheng et al., 2018), and cell-autonomous 
and non-cell-autonomous mechanisms (Creus-Muncunill and Ehrlich, 2019).

Studies have shown that microglial over-reactivity is a crucial feature of 
HD pathology and that neuroinflammation characterized by the presence 
of reactive microglia, astrocytes, and inflammatory factors in the brain is 
observed in HD patients before the appearance of motor and cognitive 
impairment symptoms (Donley et al., 2021; Saba et al., 2022). Moreover, 
neurons expressing mHTT initiate a local response in microglia, leading to 
an increase in their number and a change in their states (Ellrichmann et al., 
2013; Yang et al., 2017). In response to the accumulation of increased mHTT, 
microglia are hyperactivated, reversing the neuroprotective effect by secreting 
inflammatory cytokines, exacerbating neuroinflammation, and accelerating 
the disease process in HD (Ellrichmann et al., 2013; Yang et al., 2017). A 
study has also shown that inflammatory vesicles may be critical regulators 
mediating neuroinflammation in neurodegenerative diseases (Heneka et al., 
2013). Inflammatory vesicles are essential regulators of the innate immune 
response and are responsible for the maturation of inflammatory cytokines 
and cysteine protease-1 during neuroinflammation; NLRP3 inflammatory 
vesicles are particularly associated with senescence and are activated in 
response to different molecular patterns associated with injury, leading to 
chronic low-grade inflammation (Feng et al., 2021; Holbrook et al., 2021). 
Overactivated NLRP3 inflammatory vesicles are involved in the pathogenesis 
of several neurodegenerative diseases associated with aging (e.g., HD 
and PD) (Feng et al., 2021; Holbrook et al., 2021). Furthermore, NLRP3 
inflammasomes interact with mitochondrial autophagy. When activation of 
NLRP3 inflammatory vesicles in microglia are increased, it reduces autophagy 
and promotes neurotoxicity, accelerating neuronal damage (Guo et al., 2015; 
Wu et al., 2021). Therefore, the activation of inflammasomes needs to be 

strictly controlled, and disease progression needs to be slowed down by 
attenuating NLRP3 inflammasome signaling (Guo et al., 2015; Guan and Han, 
2020). In the early stages of HD, microglia become more significant and have 
shorter protrusions; at this point, they are in a neuroprotective state, reducing 
the accumulation of mHTT in neurons by increasing their consumption 
(Milnerwood and Raymond, 2010; Kraft et al., 2012; Crapser et al., 2020). In 
addition, they release anti-inflammatory cytokines and neurotrophic factors 
(TGF-β, CD206, arginine-1 (Arg-1), and BDNF), which protect damaged 
neurons and increase neuronal survival; these neuroprotective effects slow 
down the progression of the disease (Milnerwood and Raymond, 2010; Kraft 
et al., 2012; Crapser et al., 2020). However, as the disease progresses, rapidly 
proliferating microglia are observed near mHTT-expressing neurons (Kraft et 
al., 2012), which exhibit a neurotoxic state by responding to aging, changes 
in the brain microenvironment, and misfolded mHTT. In addition to aberrant 
activation of nuclear factor (NF)-κB-p65, activated NLRP3 in microglia 
promotes the release of pro-inflammatory cytokines and chemokines (IL- 1β, 
IL-6, TNF-α, and CCL-5), exerting neurotoxic effects, accelerating neuronal 
damage, and promoting disease progression (Hsiao et al., 2013; Crotti and 
Glass, 2015; Siew et al., 2019). Thus, microglia exhibit equally neurotoxic and 
neuroprotective functions in HD, and by regulating the imbalance in the ratio 
of neuroprotective to neurotoxic microglia, the neurotoxic effects may be 
reduced. In addition, promoting mitochondrial autophagy and enhancing the 
clearance of damaged mitochondria can reduce the accumulation of hypoxia-
induced ROS, further attenuating the activation of NLRP3 inflammatory 
vesicles in microglia and neuroinflammation, increasing the protective effect 
on neurons, and slowing down the disease process (Han et al., 2019, 2021).

The slow progression of HD and the lack of effective treatments impose 
a heavy economic burden on families and society (van Duijn et al., 2014). 
Despite the enormous amount of human and material resources spent to 
develop therapeutic interventions, there are still no curative or palliative drugs 
for this devastating disease. Therefore, further research into the pathogenesis 
of HD and an accurate and sensitive assessment of HD progression by defining 
appropriate biomarkers are needed to find appropriate treatments (Weir et 
al., 2011; Byrne and Wild, 2016). Promoting the transition of microglia from a 
neurotoxic state to a neuroprotective state may alleviate disease progression 
in HD by intervening in neuroinflammation (Saba et al., 2022). Thus, 
neuroinflammation may become a new target for HD therapeutic strategies, 
providing new research directions for treating HD.

PD 
PD is an irreversible cognitive and motor disorder caused by structural 
changes or loss of function of neurons in the body (Tolosa et al., 2006). Its 
main pathological features are loss of the functional mitochondrial complex 
I of dopamine (DA) neurons in the substantia nigra pars compacta of the 
midbrain, accumulation of abnormal proteins, such as α-syn, in Lewy vesicles, 
and inflammatory responses caused by overreactive glial cell proliferation 
(Liu et al., 2022). The lack of nigrostriatal-striatal DA neurons leads to 
the primary motor symptoms of PD, such as tonicity, resting tremor, slow 
movement, rigidity, and gait disturbances (Mendonça et al., 2017). It is also 
accompanied by some non-motor symptoms, such as olfactory disturbances, 
cognitive impairment, psychiatric symptoms, sleep disturbances, autonomic 
disorders, pain, and fatigue (Kalia and Lang, 2015). Epidemiological studies 
have shown that PD affects 7–10 million people worldwide, with a prevalence 
of approximately 1% at the age of 60 years, while the prevalence rises to 4% 
over the age of 60 years (Bloem et al., 2021). PD not only poses a serious 
threat to the health of the elderly population, it also imposes a heavy 
economic burden on their families and society (GBD 2016 Parkinson’s Disease 
Collaborators, 2018). Therefore, how to effectively treat PD has become an 
urgent problem to be solved.

Various mechanisms have been proposed to regulate the development of PD 
and neuronal degeneration, including free radical formation (Phaniendra et 
al., 2015), oxidative stress (Grünblatt et al., 2001), mitochondrial dysfunction 
(Tufi et al., 2014), excitotoxicity (Mironova et al., 2018), calcium overload 
(Hirsch et al., 2013), nutrient factor deficiency (Decressac et al., 2011), 
inflammatory processes (Przedborski, 2010), genetic factors (Deng et al., 
2018), environmental influences (Di Monte, 2003), toxic effects of nitric 
oxide, and cell apoptosis (Bourgognon et al., 2021). Furthermore, senescence 
plays a vital role in the progression of PD (Collier et al., 2011). During the 
development of PD, the body experiences reduced proteasome activity, 
impaired autophagy, and oxidative phosphorylation. Most importantly, 
mitochondria in DA neurons are damaged with increased oxidative stress, 
leading to mitochondrial dysfunction, which in turn causes neuronal atrophy 
and death, and aggravates the PD process (Collier et al., 2017; Theurey and 
Pizzo, 2018; González-Rodríguez et al., 2021). In addition, senescence causes 
chronic inflammation in the body, producing SASP, which affects the active 
state of microglia; this plays a vital role in the neurodegenerative process of 
PD by mediating neuroinflammatory responses to alter the surrounding stable 
microenvironment (McGeer et al., 1988; Qin et al., 2021).

However, in PD, low levels of inflammation due to senescence has a positive 
effect on the overall cellular state by initiating immune defenses to clear 
harmful substances. However, long-term chronic inflammation leads to 
a breakdown of this beneficial defense mechanism, and acute systemic 
inflammation has also been widely shown to affect microglial states 
(Cunningham et al., 2005; Shemer et al., 2020). Microglia in damaged areas 
of the PD brain respond to the inflammatory environment by exhibiting a 
neurotoxic state with the high production of inflammatory factors, including 
IL-1β, TNF-α, iNOS, nitric oxide (NO), and ROS (Martinez and Gordon, 
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2014). Among them, TNF-α is the earliest and most crucial inflammatory 
mediator during the inflammatory response, which activates neutrophils 
and lymphocytes, and rapidly leads to tissue damage (Pinci et al., 2020). 
IL-6 and IL-1β promote inflammation and tissue fibrosis (Weber et al., 
2010). Overexpression of iNOS enables the release of NO active factors, 
which further amplifies the inflammatory response in PD leading to the 
degeneration and necrosis of DA neurons, which in turn leads to degeneration 
of the nigrostriatal dopaminergic pathway and causes neurodegeneration. 
In addition, iNOS promotes cytokine and chemokine-induced toxicity and 
inflammation leading to oxidative stress, which promotes the degeneration 
of DA neurons. In turn, this promotes neurodegeneration, exacerbates 
motor deficits in PD, and amplifies extensive damage to adjacent neurons 
(Brown and Neher, 2014), leading to a vicious circle between dying neurons 
and neuroinflammation, exacerbating PD progression (Depino et al., 2003; 
McGeer et al., 2003; García-Domínguez et al., 2018; Badanjak et al., 2021). 
Damaged DA neurons stimulate microglia, leading to a positive feedback loop 
of microglia state changes and DA neuron death (Glass et al., 2010).

Neuroprotective microglia promote neuronal repair by taking up 
glutamate (Byrnes et al., 2009), removing dead cell debris and abnormally 
accumulated proteins (Diaz-Aparicio et al., 2016), promoting extracellular 
matrix reconstruction and tissue repair, improving immune regulation, and 
supporting neuronal survival through neurotrophic factors. However, in PD, 
neurodegeneration is exacerbated by an imbalance in the ratio of neurotoxic 
microglia to neuroprotective microglia, resulting in the inadequate protection 
of neurons (Tang et al., 2014). The conversion of microglia from a neurotoxic 
to a neuroprotective state is promoted by activating pathways such as 
peroxisome proliferator-activated receptor γ (PPARγ) and mitogen-activated 
protein kinase (MAPK), increasing the number of neuroprotective microglia 
in PD, expanding the repair effect on DA neurons, and alleviating motor and 
non-motor symptoms in PD (Zhang et al., 2018; Jiang et al., 2020).

The imbalance in the ratio of neurotoxic microglia to neuroprotective 
microglia in PD results in the presence of high levels of inflammatory factors 
and ROS in the brain, which leads to a disruption in brain homeostasis 
and accelerates breakdown of the BBB (Perry et al., 2010). In addition, 
the inflammatory response of DA neurons is aggravated by the increased 
phagocytosis and metabolic disorders that exacerbate the inflammatory 
environment (Mantovani et al., 2004). In conclusion, regulating the balance 
of microglia in the PD brain by promoting the interconversion of different 
microglia from a neurotoxic to a neuroprotective state has a promising 
therapeutic future in treating PD (Hu et al., 2015). However, specific 
mechanisms regulating the transition of microglia from a neurotoxic to a 
neuroprotective state need further investigation.

In  summar y,  a l though  the  act ivat ion  o f  microg l ia  in  d i f ferent 
neurodegenerative diseases is influenced by various factors, microglia 
undergo corresponding changes in their states by responding to alterations 
in the brain microenvironment as aging progresses, further affecting the 
function of microglia, transforming them from neuroprotective to neurotoxic, 
and exacerbating neuronal apoptosis and neuroinflammation by promoting 
disease progression (Figure 3). However, regulating the microglial states 
and alleviating the imbalance of microglia in different states can improve 
neuroinflammation, thus slowing down the disease progression.

Potential Drugs Targeting Microglia for the 
Treatment of Neurodegenerative Diseases 
The critical role of the functional state of microglia in maintaining 
homeostasis in the brain microenvironment and in influencing the course of 
neurodegenerative diseases has been summarized previously. It has now been 
shown that targeting the functional state of microglia can be a potential target 
for treating neurodegenerative diseases (Hu et al., 2015; Prinz et al., 2019). 
Current studies have revealed that various drugs can target and regulate the 
functional state of microglia (Table 1). In a mouse model of AD, treatment 
with rutin and curcumin inhibited NF-κB pathway activity and reduced glial 
cell proliferation, inhibited tau aggregation and its induced cytotoxicity, 
reduced the production of pro-inflammatory cytokines, and promoted the 
production of anti-inflammatory mediators and neurotrophic factors, which 
down-regulated neuroinflammation and improved cognitive function in AD 
mice (Dairam et al., 2008; Zhang et al., 2019; Sun et al., 2021). In HD, ellagic 
acid and vanillic acid inhibited microglia overreaction by targeting the IKK-
NF-κB signaling pathway, thereby reducing neuroinflammation and oxidative 
stress and improving motor and cognitive function (Bains et al., 2022). In PD, 
inhibition of TLR4 and MAPK inflammatory signaling through polysialic and 
pyrazolo [3,4-d] pyrimidine (KKC080106) modulated microglia state changes 
and improved inflammatory DA neurodegeneration; therefore, they may 
be candidates for the prevention of PD and neurodegenerative diseases 
(Liao et al., 2021; Thiesler et al., 2021; Lee et al., 2022). Overall, targeted 
modulation of microglia has yielded remarkable results for the treatment of 
neurodegenerative diseases, and the development of drugs based on this 
target is expected to be an effective way to regulate the level of inflammation 
in the brain and restore homeostasis in the brain microenvironment. 
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Figure 3 ｜ The role of microglia in different neurodegenerative diseases.  
The state of microglia is closely associated with aggregated misfolded proteins that 
are seen in various neurodegenerative diseases, including AD, HD, and PD. Aggregated 
α-syn, Aβ/tau oligomers, and mHTT released from neurons into the extracellular space 
can directly induce the transition of microglia to a neurotoxic state. During the disease 
onset phase, microglia in the neuroprotective state primarily phagocytose cellular debris, 
promote tissue reconstruction, and produce anti-inflammatory factors to suppress 
the pro-inflammatory response and maintain tissue homeostasis. However, due to 
endogenous stimuli and the persistence of environmental toxins, microglia exhibit 
neurotoxic effects, and their phagocytosis is reduced. Furthermore, inflammatory factors 
that produce neuroinflammation are released, resulting in irreversible neuronal loss 
and disease onset. Created with Figdraw. AD: Alzheimer’s disease; Aβ: amyloid-β; α-syn: 
α-synuclein; HD: Huntington’s disease; mHTT: mutant huntingtin; PD: Parkinson’s disease. 

Table 1 ｜ Drugs targeting microglia for the treatment of neurodegenerative diseases

Drug Disease Targer Function

Curcumin 
Rutin

Alzheimer’s 
disease

NF-κB Inhibited NF-κB activity, tau aggregation, and 
induced cytotoxicity, reduced the proliferation 
of pro-inflammatory cytokines and glial 
cells, promoted the production of anti-
inflammatory mediators and neurotrophic 
factors, down-regulated neuroinflammation, 
and improved the cognitive function of 
Alzheimer's disease mice.

Ellagic acid 
Vanillic acid

Huntington’s 
disease

IKK-NF-κB Inhibited microglia overreaction, thereby 
reducing neuroinflammation and oxidative 
stress, and improving motor and cognitive 
function.

Polysialic Parkinson’s 
disease

TLR4 Enhanced synaptic plasticity, modulated 
microglia activation, attenuated inflammatory 
cytokine release, and improved inflammatory 
dopamine neurodegeneration.

KKC080106 Parkinson’s 
disease

MAPK Blocked microglial activation, inhibitd the 
release of inflammatory factors, and inhibited 
IκB and P38 MAPK in MPTP mice.

IKK: Inhibitor of κB kinase; IκB: inhibitor of κB; MAPK: mitogen-activated protein kinase; 
MPTP: mitochondrial permeability transition pore; NF-κB: nuclear factor κB; TLR: Toll-like 
receptor.

Conclusion 
In neurodegenerative diseases, microglia play an important role during aging. 
On the one hand, microglia remove antigenic substances via phagocytosis 
of damaged cellular debris. On the other hand, microglia, in response to 
aging and chronic inflammation, can release cytotoxic factors that aggravate 
neuronal damage and promote the progression of neurodegenerative 
diseases. Since microglia have dual effects, studying the mechanism of 
microglial action in neurodegenerative diseases, regulating the transformation 
of microglial states in response to changes in the surrounding environment, 
and limiting their effects on neuronal damage may help to slow down the 
disease process and improve the therapeutic effect. Thus, microglia are 
expected to provide a target for new therapeutic strategies in treating 
neurodegenerative diseases and new ideas for screening and developing 
potential drug candidates. However, the mechanisms of the transformation 
of microglial states remain to be further investigated. To elucidate the 
mechanisms of microglia states transformation, it is possible to reverse 
the neuroinflammation caused by microglia in a neurotoxic state, regulate 
the inflammatory reaction, and enhance the protective effect on neurons 
response to aging and disease, then alleviate the diseases development, 
further improve of the life quality of patients.
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