Biomarkers for Epilepsy Deep Brain Stimulation

Gloria Ortiz-Guerrero and Nicholas M. Gregg

Department of Neurology, Mayo Clinic, Rochester, Minnesota, U.S.A.

Summary: Deep brain stimulation (DBS) of the anterior nucleus of the thalamus is an FDA-approved therapy for drug-resistant focal epilepsy. Recent advances in device technology, thalamic stereotactic-EEG, and chronic sensing have deepened our understanding of corticothalamic networks in epilepsy and identified promising biomarkers to guide and personalize DBS. In this review, we examine electrophysiological, imaging, and clinical biomarkers relevant to epilepsy DBS, with a focus on their potential to support seizure detection, target engagement, network excitability tracking, and seizure risk forecasting. We highlight emerging insights from thalamic

sEEG, including both passive recordings and active stimulation protocols, which enable mapping and modulation of large-scale brain networks. The capabilities of clinical sensing-enabled DBS systems are reviewed. As device functionality and biomarker discovery evolve, concerted translational efforts are needed to realize a new paradigm of personalized DBS in epilepsy.

Key Words: Neuromodulation, Single pulse electrical stimulation, Chronic brain recordings, Adaptive stimulation, Thalamic sEEG.

(J Clin Neurophysiol 2025;42: 486-492)

Anterior nucleus of the thalamus deep brain stimulation (ANT-DBS) is an FDA-approved adjunctive therapy for drugresistant focal epilepsy and is a viable treatment option for patients who are poor surgical candidates. The pivotal ANT-DBS SANTE study^{1,2} and long-term follow-up investigations have identified superior responses for patients with frontal and temporal seizure networks, compared with other regions,^{1,2} leading to the "network theory" of ANT-DBS—that stimulating the ANT, a node in the Papez circuit, has greater therapeutic effects on seizure networks associated with this limbic network. Long-term follow tracking of the SANTE cohort has reported a median seizure frequency reduction of 56% at 2 years, increasing to 69% at 5 years and 75% at 7 years.³

Beyond stimulation of the ANT, other subcortical and thalamic structures have been identified and targeted for epilepsy DBS. Two common off-label thalamic targets, the centromedian (CM) nucleus and pulvinar, have been studied for generalized and posterior quadrant epilepsies, respectively, with some promising preliminary results.⁴⁻⁶

Despite proven efficacy, epilepsy DBS has notable limitations. Seizure freedom is rare, the latency to response is long, and DBS does not work for all patients. One major challenge is the long latency and uncertain reliability of the clinical readout (patient reported seizure diaries), which is compounded by patient encounter intervals (roughly 3–6 months). This slow clinical response prevents efficient tuning of stimulation parameters, in contrast to DBS for conditions such as Parkinson disease, where parameters can be optimized during a single visit. Similarly, the

use of generic targets means that the stimulated thalamic subfield may not optimally engage a patient's specific seizure network.

Advances in device technology, evolving clinical practices—including the growing interest in thalamic sEEG—and biomarker development may address these DBS limitations. The aim of this review was to summarize key biomarkers for DBS in epilepsy and propose biomarker-informed approaches to DBS for epilepsy.

NONINVASIVE SEIZURE NETWORK BIOMARKERS

Noninvasive biomarkers of seizure networks may improve the characterization of corticothalamic networks involved in epilepsy, informing patient candidacy and target selection for DBS. Scalp EEG remains a fundamental tool for epilepsy classification, distinguishing between focal and generalized epilepsy. Seizure onset networks identified by scalp EEG, combined with existing knowledge of thalamocortical circuits, can help with DBS target selection.^{8,9} MRI plays a critical role in defining the anatomical extent of structural abnormalities in lesional epilepsy, while also assessing thalamic structures. 10 Functional and metabolic imaging may provide additional insights into the involvement of subcortical structures in seizure networks. For instance, interictal FDG-PET shows hypometabolism in the ANT in patients with temporal lobe epilepsy, indicating potential dysfunction in the corticothalamic pathways. 11-13 Similarly, interictal single-photon emission computed tomography has shown interictal hypoperfusion in the temporal lobe and ipsilateral thalamus in patients with refractory temporal lobe epilepsy¹⁴ as well as in the thalamus of patients with frontal lobe epilepsy and motor seizure semiology. 15

Copyright © 2025 by the American Clinical Neurophysiology Society ISSN: 1537-1603/25/4206-0486

DOI 10.1097/WNP.0000000000001189

NETWORK-GUIDED DBS TARGET SELECTION

The ANT is the most thoroughly researched and only FDAapproved target for epilepsy DBS. The ANT is part of the thalamic anterior complex, a node of the Papez circuit, and

N. M. Gregg has received research funding from Medtronic, Inc, and has consulted for NeuroOne, Inc. (all funds to Mayo Clinic). G. Ortiz-Guerrero has no disclusures

Funding: National Institute of Neurological Disorders and Stroke award K23NS136792 (NMG). The content is solely the responsibility of the authors and does not represent the official views of the NIH.

Address correspondence and reprint requests to Nicholas Gregg, MD, 200 First Street SW, Rochester, MN 55905, U.S.A.; e-mail: Gregg.Nicholas@ mayo.edu.

a component of the limbic thalamus with strong efferent projections to mesial and anterior frontal, and temporal regions. 16,17 The network theory of ANT-DBS suggests that this target is best suited for frontotemporal seizure networks 18 and, in particular, for seizure networks with limbic system connectivity. Prior fMRI-based functional connectivity work has shown that ANT-DBS connectivity profiles differ between responders and nonresponders, with greater positive functional connectivity to the default mode network seen in responders. 19 Subsequently, a study fMRI-blood-oxygen-level—dependent (BOLD) signal during active ANT-DBS fMRI further demonstrated modulation of limbic and default mode network regions during high-frequency stimulation, further characterizing the networks engaged by ANT-DBS. 20

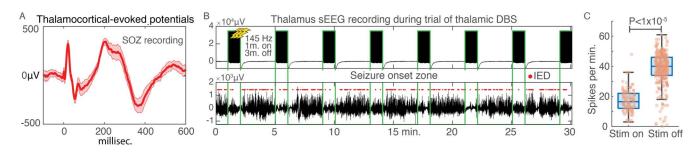
The CM nucleus, an off-label thalamic target, exhibits strong connectivity with the basal ganglia and intrathalamic pathways, as well as diffuse cortical connections, particularly to the perirolandic sensorimotor cortex, premotor cortex, and anterior cingulate cortex.21 Generalized epilepsy network mapping, derived from brain abnormalities in patients with idiopathic generalized epilepsy (IGE) and the human connectome, demonstrated that the CM nucleus has peak functional connectivity with the IGE network.²² Several authors have demonstrated benefits of CM-DBS for patients with IGE23 and Lennox-Gastaut syndrome.^{24–26} In the stimulation group of the ESTEL trial, the primary outcome— patient-reported seizure diaries—did not reach statistical significance; however, a reduction in electrographic seizures on 24-hour ambulatory EEG was observed in the secondary outcome.²⁶ Network connectivity mapping, and EEGfMRI comparing IGE and Lennox-Gastaut syndrome networks,²⁷ suggest that there may be syndrome specific targets for CM-DBS. Emerging computational imaging and fieldmodeling methods show promise network-guided neuromodulation to refine DBS—for example, a recent study combining deterministic tractography and a biophysical modeling framework to disambiguate DBS activation of neighboring fiber tracks was able to predict behavioral change in response to central thalamus DBS in nonhuman primates.²⁸

Another off-label thalamic target, the pulvinar nucleus, has emerged as a potential target for treating posterior quadrant epilepsy.^{6,29,30} The PULSE trial reported improvements in seizure severity and quality of life, alongside a nonsignificant trend toward seizure reduction.⁶

THALAMIC STEREOTACTIC-EEG

The thalamus plays a critical role in seizure generation and propagation, \$^{31,32}\$ and recent work using thalamic sEEG has delivered new insights into thalamic and subcortical ictal and interictal electrophysiological dynamics in epilepsy. \$^{33-35}\$ Research and clinical thalamic sampling during sEEG has rapidly grown, and best practices continue to evolve. \$^{36,37}\$ In a large series of thalamic sEEG, Pizzo et al. \$^{32}\$ found that in 86% of patients the thalamus was involved during their focal seizures whereas. In addition, other work has demonstrated variable thalamic nucleus propagation patterns across patients undergoing multisite thalamic sampling. \$^{33}\$ More work is needed to determine the

predictive value of thalamic seizure characterization during sEEG for long-term response to thalamic DBS.


Unlike the cortex, the thalamus lacks a well-organized columnar and laminar structure, ³⁸ which leads to lower amplitude local field potential (LFP) amplitudes, and so thalamic channels should be read at greater sensitivity compared with the cortex. To improve the interpretability of thalamic SEEG data, spectral analysis using Fast Fourier Transform (FFT) can be used. By comparing ictal spectral activity with epochs recorded during both wakefulness and sleep, we can better characterize the frequency bands during seizure activity. These spectral features can directly inform the ambulatory sensing parameters for clinical DBS systems. Prior work has demonstrated the feasibility of this method, using interictal and ictal thalamic sEEG spectral signatures to guide DBS sensing parameters for ambulatory seizure detection and lateralization.³⁹

Stimulation during thalamic sEEG can provide important complementary information to passive recordings of spontaneously occurring activity. Single pulse electrical stimulation and the resulting thalamocortical-evoked potentials⁴⁰ provides a measurement of network effective connectivity (directed causal influence between neural populations). Prior work has demonstrated that effective connectivity between thalamic and cortical sites is not always reciprocal,41 which has clear implications for DBS target selection (early or maximal ictal activity in a given thalamic nucleus does not necessarily indicate that stimulation of that nucleus provides optimal engagement of the seizure network). Thalamocortical-evoked potentials can be used to demonstrate seizure network engagement by thalamic stimulation. In addition, emerging work indicates that thalamocortical effective connectivity and trials of high-frequency thalamic DBS during sEEG can map seizure network engagement, suppress IEDs (Fig. 1), modulate network excitability, and perhaps predict response to chronic neuromodulation. 42-44

DBS TARGETING AND LEAD LOCALIZATION

The ANT can be directly visualized on MRI imaging sequences, with particularly good visualization provided by white-matter–nulled imaging sequences, such as the fast gray matter acquisition T1 inversion recovery (FGATIR) sequence. The ANT receives afferent projections from the mammillary bodies through the mammillothalamic tract white matter bundle and is separated from neighboring thalamic nuclei by the internal medullary lamina, allowing for direct visualization of the mammillothalamic tract and ANT on FGATIR sequences. Emerging techniques such as 3T quantitative susceptibility mapping also shows promise for direct ANT visualization. Frior work suggests a DBS "sweet-spot" around the anterior third of the ANT and head of the mammillothalamic tract. 47–49

Targeting the CM nucleus has been enhanced by high-contrast MRI sequences such as magnetization-prepared two rapid acquisition gradient-echo (MP2RAGE).⁵ MP2RAGE at 3T yields uniform T1-weighted images with excellent gray—white matter differentiation. Warren et al.⁵ demonstrated that the CM nucleus is distinctly hyperintense on MP2RAGE relative to adjacent nuclei—the pulvinar, mediodorsal, and parafascicular

FIG. 1. Thalamic stimulation during sEEG. **A**, Single pules stimulation delivered to that thalamus and the resulting thalamocortical-evoked potentials can demonstrate if there is connectivity between the stimulation thalamic subfield and cortical regions of interest, such the seizure onset zone as shown in this plot. **B**, Trial of high-frequency duty-cycle stimulation can produce acute desynchronization of seizure network activity and suppression of IEDs during the on-phase of the duty cycle, as shown here, with on-phase marked by green lines. **C**, This stimulation trials resulted in significant suppression of the IED rate in the on-phase versus off-phase of duty-cycle stimulation.

nuclei. More recently, work has demonstrated the feasibility of direct visualization of the CM and parafascicular nuclei, using the edge-enhancing gradient echo with multi-image coregistration and averaging (EDGE-MICRA) imaging method.⁵⁰ The habenula, a small epithalamic nucleus, is posterior, superior, and medial relative to the CM nucleus and can assist with targeting.⁵¹ As discussed above, CM-DBS targeting may be syndrome specific, with prior work identifying distinct sweet-spots for IGE²⁰ and Lennox–Gastaut syndrome.⁵²

Advancements in MRI sequences (MP2RAGE and FGA-TIR) and ultra-high-field imaging have also enabled direct visualization of the pulvinar nucleus. Susceptibility-weighted imaging accentuates iron-rich regions and fibrous septa, with greater contrast at 7T, potentially delineating pulvinar subregions.⁵³ Pulvinar appears darker than the adjacent CM on MP2RAGE sequences, creating a visible interface.⁵ Similarly, white-matter-nulled inversion recovery imaging (e.g., FGATIR) can highlight gray matter differences between nuclei.⁵³

When direct MRI visualization is inadequate, atlas-based techniques can aid DBS targeting.⁵ Automated thalamus segmentation methods⁵⁴ and digital thalamic atlases can be nonlinearly warped into a patient's MRI space, as described previously.^{5,23,55}

In addition, postoperative imaging is crucial to localize DBS leads and select stimulation contacts. Typically, a postoperative high-resolution CT coregistered to preoperative MRI can help to identify contact proximity to target, for targets that can be directly visualized. ⁵⁶ In addition, clinical and research packages ⁵⁷ are available that provide automated imaging coregistration, lead localization, and thalamic atlas normalization tools to enhance contact-target localization.

BIOMARKERS FOR DBS WITH SENSING

Clinical DBS Recording Capabilities

The clinical Medtronic Percept DBS system offers constrained chronic ambulatory brain recordings, with additional functionality that is accessible by the physician programming tablet during in-person visits. This Percept system provides chronic ambulatory bipolar recordings (one recording channel

per lead) of LFP power within a physician-selected 5-Hz wide frequency band, saved in 10-minute averaged increments. Data storage capacity ranges between 40 (Percept RC) and 60 days (Percept PC), with overwriting of earlier data for extended recording durations. These recordings require a sense-friendly configuration, with bipolar sensing contacts bracketing one or two monopolar stimulation contacts, allowing for common-mode artifact rejection. Sense-friendly stimulation frequencies range from 50 to 185 Hz, with stimulation rates at least 10 Hz higher than the frequency band of interest. Events of interest can be marked by the patient or caregiver using a patient programmer, which saves an event timestamp to the device, and records a fullspectrum FFT measurement (calculated over 30 seconds following event mark; 100 event snapshot per lead storage capacity) when the patient is in a sensing configured stimulation program. Up to four distinct event types can be configured. Patient-marked events will also trigger resumption of stimulation if an event is marked during the off phase of duty-cycle stimulation. Recorded data are accessible by the physician programming tablet during in-person visits.

During in-person encounters, the physician programming tablet can acquire time-series recordings, sampled at 250 Hz, from three bipolar pairs per lead when stimulation is off, or from a single bipolar pair during sense-friendly stimulation.⁵⁸ Fast Fourier Transform frequency spectra can be acquired from each bipolar pair across levels (6 per lead), as well as from directional segments.

Chronic Ambulatory Seizure Detection

Previous work has shown that chronic LFP spectral trends—such as those captured by the clinical Percept DBS system—can detect and lateralize seizures in some individuals with drug-resistant focal epilepsy. In a study using the investigational Medtronic Summit RC+S system in patients with drug-resistant mesial temporal lobe epilepsy implanted with bilateral ANT and hippocampal electrodes capable of 250 Hz time-series recordings, our group found that optimal seizure detection occurred using Percept-like power-in-band features centered at 7.8 Hz (with 5 Hz bandwidth). Shorter-duration epochs outperformed 10-minute averaged epochs. Notably, LFP power-in-band consistently lateralized seizure onset, with maximal power

Journal of Clinical Neurophysiology Volume 42, Number 6, September 2025

clinicalneurophys.com

in the thalamic lead ipsilateral to the hippocampal seizure focus. 57

Subsequent work extended those findings from the investigational system to the clinical Percept DBS system, demonstrating the feasibility of seizure detection and lateralization by the clinical system³⁹ (Fig. 2). In that case, nurse identified clinical seizures during inpatient DBS recording were precisely coincident with peaks in the LFP power-in-band trends (again, 7.8 Hz center frequency), and this ictal peak in LFP power was maximal ipsilateral to the patient's prior identified seizure network.³⁹ Work is ongoing to establish optimal protocols and identify spectral signatures for epilepsy tracking by DBS with sensing systems.^{59–62} Aperiodic changes in thalamic LFPs, such as a steeper 1/f slope, has been identified to differentiate ictal from interictal states,⁶² and thalamic DBS recordings may enable seizure forecasting.⁶³

Patient-reported seizure diaries are often unreliable,⁶⁴ and digitally marking events with the patient programmer, with associated FFT snapshot, and LFP spectral trends may improve event tracking. Furthermore, patient event tracking, coincident FFT spectral snapshot, and LFP trends, and be leveraged to guide adaptive DBS, as evident in recent studies of adaptive DBS for Parkinson disease.⁶⁵ This method improves accuracy by aligning stimulation adjustments with both electrophysiological signatures and reports of subjective symptoms.⁶⁶

Interictal Recordings

Identifying contacts with abnormal electrophysiological activity, such as IEDs, may indicate that a thalamic subfield is involved in a pathological or seizure network. Identifying such activity in DBS contacts could inform stimulation contact and sensing channel selection, to best engage and track seizure networks. Prior work has demonstrated that IED amplitude differences between neighboring contacts and

hemispheres are evident in DBS time-series recordings³⁹ (Fig. 3). More work is needed to establish how best to use interictal time series and spectral features to assess seizure network involvement, and track network excitability and seizure risk. Such biomarkers are needed for epilepsy—akin to Parkinson disease beta-band activity⁶⁵—to guide adaptive neuromodulation for epilepsy.

FUTURE DIRECTIONS: ADAPTIVE DBS, BIOMAR-KER-TARGETED STIMULATION, SEIZURE RISK FORECASTING, AND MANAGEMENT OF COMORBIDITIES

The aim of adaptive DBS was to modulate epileptogenic networks and suppress seizures by adjusting stimulation parameters in real time based on physiological signals or biomarkers. Adaptive DBS is already an FDA-approved therapy for Parkinson disease—stimulation amplitude modulation directed by changes in beta-band power⁶⁵—underscoring the need to establish biomarkers and stimulation protocols for adaptive DBS for epilepsy.

Candidate biomarkers include the rate of IEDs, spectral features, and evoked potential measures of excitability. Prior work has shown that thalamic high-frequency stimulation can acutely desynchronize seizure networks and modulate IED rates, 43 and modulate thalamocortical excitability. 42,69 Prior work has established the presence of circadian and multiday cycles of seizure risk, 69,70 with seizures occurring at a preferred phase in the fluctuating rate of IEDs, and may enable seizure risk forecasting. Importantly, studies have shown that ANT-DBS modulates these seizure risk cycles, adding complexity to the temporal dynamics of seizure risk. 71 In this context, understanding cycles in epilepsy will be crucial to track the impact of DBS

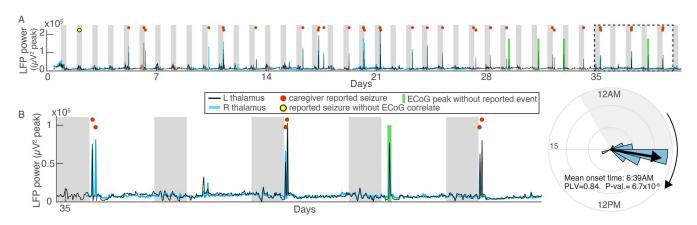
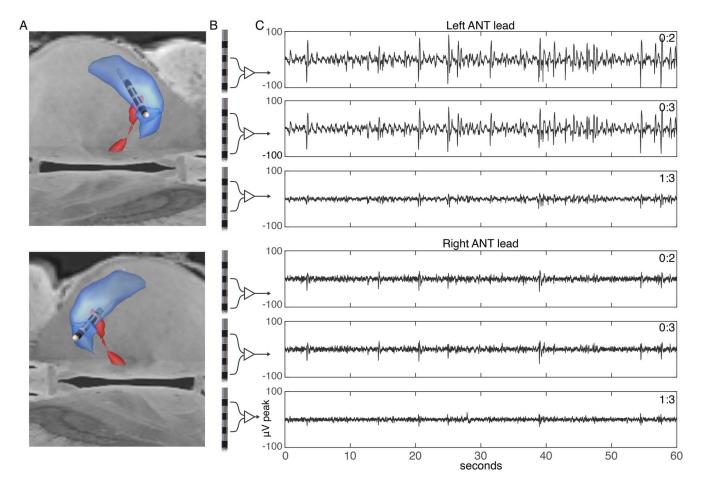



FIG. 2. Chronic ambulatory thalamic seizure detection by a clinical DBS system. The patient is a young man with a developmental and epileptic encephalopathy, drug-resistant epilepsy, and diffuse onset seizures, treated with bilateral centromedian nucleus DBS. A, Caregiver-recorded seizure times reliably correspond to relative peaks in the DBS LFP power-in-band trends (5.3-to-10.3 Hz frequency band). One event was captured without corresponding peak in LFP power, while four peaks in LFP power were without associated caregiver-reported events, which may represent true seizures that were missed by caregivers. Gray bars indicate evening hours (10 PM—6 AM). B, corresponds to marked inset from panel above. C, Significant circadian seizure phase locking is clearly evident in the 24-hour rose-plot. Gray arc corresponds to evening hours (10 PM—6 AM). P-value calculated by the omnibus test. DBS, deep brain stimulation; LFP, local field potential; PLV, phase-locking value, or R-value.

FIG. 3. Time-series recordings by a clinical DBS system. The patient is a young man with left frontotemporal regional epilepsy treated with ANT-DBS system. Data were acquired during a clinic visit by the physician programming tablet. **A**, Left and right ANT in blue and the mammillothalamic tract in red. Renderings were generated using the Lead-DBS imaging package. Top panel right is anterior, left is posterior, up is superior; in bottom panel, the anterior–posterior axis is reversed. **B**, Model of implanted leads and the corresponding bipolar recording time series. DBS, deep brain stimulation.

and to adaptively tune stimulation to each patient's unique seizure dynamics.

Emerging platforms that link implanted neuromodulation system with brain sensing capabilities to a hand-held device with bidirectional connectivity to the cloud allow for new electrophysiological biomarker-triggered prompts to be given to patient by a handheld device, to assess cognitive faculties and mood. Continuous data streaming also allows for tracking of sleep. These behavioral data points are critical to characterize and track common epilepsy comorbidities—mood, memory, and sleep—and may provide new insights into epilepsy and therapeutic practice. ⁷²

CONCLUSION

Emerging DBS biomarkers—from thalamic sEEG, imaging, and chronic DBS sensing—offer new opportunities to guide target selection, optimize parameters, detect seizures, monitor network excitability, and enable adaptive stimulation. Continued

efforts are needed to realize the potential of these advances for personalized DBS in epilepsy.

REFERENCES

- Fisher R, Salanova V, Witt T, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 2010:51:899–908.
- Fisher RS. Deep brain stimulation of thalamus for epilepsy. Neurobiol Dis 2023;179:106045.
- Kaufmann E, Peltola J, Colon AJ, et al. Long-term evaluation of anterior thalamic deep brain stimulation for epilepsy in the European MORE registry. Epilepsia 2024;65:2438–2458.
- Velasco F, Velasco M, Jimenez F, et al. Predictors in the treatment of difficult-to-control seizures by electrical stimulation of the centromedian thalamic nucleus. Neurosurgery 2000;47:295–305; discussion 304-295.
- Warren AEL, Dalic LJ, Thevathasan W, Roten A, Bulluss KJ, Archer J. Targeting the centromedian thalamic nucleus for deep brain stimulation. I Neurol Neurosurg Psychiatry 2020:91:339–349
- J Neurol Neurosurg Psychiatry 2020;91:339–349.
 Pizzo F, Carron R, Laguitton V, Clement A, Giusiano B, Bartolomei F. Medial pulvinar stimulation for focal drug-resistant epilepsy: interim 12-month results of the PULSE study. Front Neurol 2024;15:1480819.

Journal of Clinical Neurophysiology Volume 42, Number 6, September 2025

clinicalneurophys.com

- Dell KL, Cook MJ, Maturana MI. Deep brain stimulation for epilepsy: biomarkers for optimization. Curr Treat Options Neurol 2019;21:47.
- van Mierlo P, Höller Y, Focke NK, Vulliemoz S. Network perspectives on epilepsy using EEG/MEG source connectivity. Front Neurol 2019;10:721.
- Stacey W, Kramer M, Gunnarsdottir K, et al. Emerging roles of network analysis for epilepsy. Epilepsy Res 2020;159:106255.
- Zangiabadi N, Ladino LD, Sina F, Orozco-Hernández JP, Carter A, Téllez-Zenteno JF. Deep brain stimulation and drug-resistant epilepsy: a review of the literature. Front Neurol 2019;10:601.
- Yan H, Wang X, Yu T, et al. The anterior nucleus of the thalamus plays a role in the epileptic network. Ann Clin Transl Neurol 2022;9:2010– 2024
- Bouwens van der Vlis TAM, Schijns O, Schaper F, et al. Deep brain stimulation of the anterior nucleus of the thalamus for drug-resistant epilepsy. Neurosurg Rev 2019;42:287–296.
- 13. Sperling MR, Gur RC, Alavi A, et al. Subcortical metabolic alterations in partial epilepsy. Epilepsia 1990;31:145–155.
- Yune MJ, Lee JD, Ryu YH, Kim DI, Lee BI, Kim SJ. Ipsilateral thalamic hypoperfusion on interictal SPECT in temporal lobe epilepsy. J Nucl Med 1998;39:281–285.
- Takano A, Shiga T, Kobayashi J, et al. Thalamic asymmetry on interictal SPECT in patients with frontal lobe epilepsy. Nucl Med Commun 2001;22:319–324.
- Warsi NM, Yan H, Suresh H, et al. The anterior and centromedian thalamus: anatomy, function, and dysfunction in epilepsy. Epilepsy Res 2022:182:106913.
- Grodd W, Kumar VJ, Schüz A, Lindig T, Scheffler K. The anterior and medial thalamic nuclei and the human limbic system: tracing the structural connectivity using diffusion-weighted imaging. Sci Rep 2020:10:10957.
- Salanova V, Sperling MR, Gross RE, et al. The SANTÉ study at 10 years of follow-up: effectiveness, safety, and sudden unexpected death in epilepsy. Epilepsia 2021;62:1306–1317.
- Middlebrooks EH, Grewal SS, Stead M, Lundstrom BN, Worrell GA, Van Gompel JJ. Differences in functional connectivity profiles as a predictor of response to anterior thalamic nucleus deep brain stimulation for epilepsy: a hypothesis for the mechanism of action and a potential biomarker for outcomes. Neurosurg Focus 2018;45:E7.
- Middlebrooks EH, Jain A, Okromelidze L, et al. Acute brain activation patterns of high- versus low-frequency stimulation of the anterior nucleus of the thalamus during deep brain stimulation for epilepsy. Neurosurgery 2021;89:901–908.
- 21. Ilyas A, Pizarro D, Romeo AK, Riley KO, Pati S. The centromedian nucleus: anatomy, physiology, and clinical implications. J Clin Neurosci 2019:63:1-7
- Ji GJ, Fox MD, Morton-Dutton M, et al. A generalized epilepsy network derived from brain abnormalities and deep brain stimulation. Nat Commun 2025;16:2783.
- Park S, Permezel F, Agashe S, et al. Centromedian thalamic deep brain stimulation for idiopathic generalized epilepsy: connectivity and target optimization. Epilepsia 2024;65:e197–e203.
- Velasco F, Velasco M, Ogarrio C, Fanghanel G. Electrical stimulation of the centromedian thalamic nucleus in the treatment of convulsive seizures: a preliminary report. Epilepsia 1987;28:421–430.
- Cukiert A, Cukiert CM, Burattini JA, Mariani PP. Seizure outcome during bilateral, continuous, thalamic centromedian nuclei deep brain stimulation in patients with generalized epilepsy: a prospective, openlabel study. Seizure 2020;81:304–309.
- Dalic LJ, Warren AEL, Bulluss KJ, et al. DBS of thalamic centromedian nucleus for Lennox-Gastaut syndrome (ESTEL Trial). Ann Neurol 2022;91:253–267.
- Warren AEL, Tobochnik S, Chua MMJ, Singh H, Stamm MA, Rolston JD. Neurostimulation for generalized epilepsy: should therapy be syndrome-specific?. Neurosurg Clin N Am 2024;35:27–48.
- Janson AP, Baker JL, Sani I, Purpura KP, Schiff ND, Butson CR. Selective activation of central thalamic fiber pathway facilitates behavioral performance in healthy non-human primates. Sci Rep 2021;11:23054.
- Burdette D, Mirro EA, Lawrence M, Patra SE. Brain-responsive corticothalamic stimulation in the pulvinar nucleus for the treatment of regional neocortical epilepsy: a case series. Epilepsia Open 2021;6:611–617.
- 30. Filipescu C, Lagarde S, Lambert I, et al. The effect of medial pulvinar stimulation on temporal lobe seizures. Epilepsia 2019;60:e25–e30.

- Guye M, Régis J, Tamura M, et al. The role of corticothalamic coupling in human temporal lobe epilepsy. Brain 2006;129:1917–1928.
- 32. Paz JT, Davidson TJ, Frechette ES, et al. Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat Neurosci 2013;16:64–70.
- 33. Wu TQ, Kaboodvand N, McGinn RJ, et al. Multisite thalamic recordings to characterize seizure propagation in the human brain. Brain 2023;146:2792–2802.
- McGinn R, Von Stein EL, Datta A, et al. Ictal involvement of the pulvinar and the anterior nucleus of the thalamus in patients with refractory epilepsy. Neurology 2024;103:e210039.
- 35. Pizzo F, Roehri N, Giusiano B, et al. The ictal signature of thalamus and basal ganglia in focal epilepsy: a SEEG Study. Neurology 2021;96:e280–e293.
- Pati S, Agashe S, Kheder A, et al. Stereoelectroencephalography of the deep brain: basal ganglia and thalami. J Clin Neurophysiol 2024;41:423

 –429.
- Price AV, Sirsi D, Joshi C. Thalamic stereo-electroencephalography exploration in pediatric drug-resistant epilepsy: implantation technique and complications. J Neurosurg Pediatr 2025;35:361–368.
- 38. Jones EG. Viewpoint: the core and matrix of thalamic organization. Neuroscience 1998;85:331–345.
- Ortiz-Guerrero G, Park S, Starnes K, et al. Seizure detection and lateralization using thalamic deep brain stimulator recordings. J Clin Neurophysiol 2025;42:279–283.
- Keller CJ, Honey CJ, Mégevand P, Entz L, Ulbert I, Mehta AD. Mapping human brain networks with cortico-cortical evoked potentials. Philos Trans R Soc Lond B Biol Sci 2014;369:20130528.
- Rosenberg DS, Mauguière F, Catenoix H, Faillenot I, Magnin M. Reciprocal thalamocortical connectivity of the medial pulvinar: a depth stimulation and evoked potential study in human brain. Cereb Cortex 2009;19:1462–1473.
- Gregg NM, Valencia GO, Pridalova T, et al. Thalamic stimulation induced changes in network connectivity and excitability in epilepsy. medRxiv 2025:2024.03.03.24303480.
- 43. Yu T, Wang X, Li Y, et al. High-frequency stimulation of anterior nucleus of thalamus desynchronizes epileptic network in humans. Brain 2018;141:2631–2643.
- Gonzalez-Martinez J, Damiani A, Nouduri S, et al. Thalamocortical hodology to personalize electrical stimulation for focal epilepsy. Res Sq. 2024;rs.3.rs-5507011.
- 45. Grewal SS, Middlebrooks EH, Kaufmann TJ, et al. Fast gray matter acquisition T1 inversion recovery MRI to delineate the mammillothalamic tract for preoperative direct targeting of the anterior nucleus of the thalamus for deep brain stimulation in epilepsy. Neurosurg Focus 2018;45:E6.
- Yu K, Ren Z, Yu T, et al. Direct targeting of the anterior nucleus of the thalamus via 3T quantitative susceptibility mapping. Front Neurosci 2021;15:685050.
- Lehtimäki K, Möttönen T, Järventausta K, et al. Outcome based definition of the anterior thalamic deep brain stimulation target in refractory epilepsy. Brain Stimul 2016;9:268–275.
- Gross RE, Fisher RS, Sperling MR, Giftakis JE, Stypulkowski PH. Analysis of deep brain stimulation lead targeting in the stimulation of anterior nucleus of the thalamus for epilepsy clinical trial. Neurosurgery 2021;89:406–412.
- Schaper F, Plantinga BR, Colon AJ, et al. Deep brain stimulation in epilepsy: a role for modulation of the mammillothalamic tract in seizure control?. Neurosurgery 2020;87:602–610.
- 50. Middlebrooks EH, Okromelidze L, Lin C, et al. Edge-enhancing gradient echo with multi-image co-registration and averaging (EDGE-MICRA) for targeting thalamic centromedian and parafascicular nuclei. Neuroradiol J 2021;34:667–675.
 51. Bian B, Hou L, Chai Y, et al. Visualizing the habenula using 3T high-
- 51. Bian B, Hou L, Chai Y, et al. Visualizing the habenula using 31 high-resolution MP2RAGE and QSM: a Preliminary Study. AJNR Am J Neuroradiol 2024;45:504–510.
- Warren AEL, Dalic LJ, Bulluss KJ, BAppSci AR, Thevathasan W, Archer JS. The optimal target and connectivity for deep brain stimulation in Lennox-Gastaut syndrome. Ann Neurol 2022;92:61–74.
- Middlebrooks EH, Domingo RA, Vivas-Buitrago T, et al. Neuroimaging advances in deep brain stimulation: review of indications, anatomy, and brain connectomics. AJNR Am J Neuroradiol 2020;41:1558–1568.
- Su JH, Thomas FT, Kasoff WS, et al. Thalamus optimized multi atlas segmentation (THOMAS): fast, fully automated segmentation of thalamic nuclei from structural MRI. Neuroimage 2019;194:272–282.

- Neudorfer C, Butenko K, Oxenford S, et al. Lead-DBS v3.0: mapping deep brain stimulation effects to local anatomy and global networks. Neuroimage 2023;268:119862.
- Saleh C, Dooms G, Berthold C, Hertel F. Post-operative imaging in deep brain stimulation: a controversial issue. Neuroradiol J 2016;29:244–249.
- Gregg NM, Marks VS, Sladky V, et al. Anterior nucleus of the thalamus seizure detection in ambulatory humans. Epilepsia 2021;62:e158–e164.
- Sarica C, Iorio-Morin C, Aguirre-Padilla DH, et al. Implantable pulse generators for deep brain stimulation: challenges, complications, and strategies for practicality and longevity. Front Hum Neurosci 2021;15:708481.
- Chua MMJ, Vissani M, Liu DD, et al. Initial case series of a novel sensing deep brain stimulation device in drug-resistant epilepsy and consistent identification of alpha/beta oscillatory activity: a feasibility study. Epilepsia 2023;64:2586–2603.
- Satzer D, Wu S, Henry J, Doll E, Issa NP, Warnke PC. Ambulatory local field potential recordings from the thalamus in epilepsy: a feasibility study. Stereotact Funct Neurosurg 2023;101:195–206.
- Fasano A, Gorodetsky C, Paul D, et al. Local field potential-based programming: a proof-of-concept pilot study. Neuromodulation 2022;25:271–275.
- Yang AI, Raghu ALB, Isbaine F, Alwaki A, Gross RE. Sensing with deep brain stimulation device in epilepsy: aperiodic changes in thalamic local field potential during seizures. Epilepsia 2023;64:3025–3035.
- So RQ, Krishna V, King NKK, et al. Prediction and detection of seizures from simultaneous thalamic and scalp electroencephalography recordings. J Neurosurg 2017;126:2036–2044.

- 64. Cook MJ, O'Brien TJ, Berkovic SF, et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol 2013;12:563–571.
- Stanslaski S, Summers RLS, Tonder L, et al. Sensing data and methodology from the adaptive DBS algorithm for personalized therapy in Parkinson's disease (ADAPT-PD) clinical trial. NPJ Parkinsons Dis 2024;10:174.
- Oehrn CR, Cernera S, Hammer LH, et al. Personalized chronic adaptive deep brain stimulation outperforms conventional stimulation in Parkinson's disease. medRxiv 2023:2023.08.03.23293450.
- Horn A, Li N, Dembek TA, et al. Lead-DBS v2: towards a comprehensive pipeline for deep brain stimulation imaging. Neuroimage. 2019;184:293–316.
- Krauth A, Blanc R, Poveda A, Jeanmonod D, Morel A, Székely G. A mean three-dimensional atlas of the human thalamus: generation from multiple histological data. Neuroimage 2010;49:2053–2062.
- Karoly PJ, Rao VR, Gregg NM, et al. Cycles in epilepsy. Nat Rev Neurol 2021;17:267–284.
- Karoly PJ, Eden D, Nurse ES, et al. Cycles of self-reported seizure likelihood correspond to yield of diagnostic epilepsy monitoring. Epilepsia 2021;62:416–425.
- Gregg NM, Sladky V, Nejedly P, et al. Thalamic deep brain stimulation modulates cycles of seizure risk in epilepsy. Scientific Rep 2021;11:24250.
- Kremen V, Sladky V, Mivalt F, et al. Modulating limbic circuits in temporal lobe epilepsy: impacts on seizures, memory, mood and sleep. Brain Commun 2025;7:fcaf106.