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Biomarkers for Epilepsy Deep Brain Stimulation
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Summary: Deep brain stimulation (DBS) of the anterior nucleus
of the thalamus is an FDA-approved therapy for drug-resistant
focal epilepsy. Recent advances in device technology, thalamic
stereotactic-EEG, and chronic sensing have deepened our
understanding of corticothalamic networks in epilepsy and
identified promising biomarkers to guide and personalize DBS.
In this review, we examine electrophysiological, imaging, and
clinical biomarkers relevant to epilepsy DBS, with a focus on
their potential to support seizure detection, target
engagement, network excitability tracking, and seizure risk
forecasting. We highlight emerging insights from thalamic

nterior nucleus of the thalamus deep brain stimulation (ANT-

DBS) is an FDA-approved adjunctive therapy for drug-
resistant focal epilepsy and is a viable treatment option for
patients who are poor surgical candidates. The pivotal ANT-DBS
SANTE study!? and long-term follow-up investigations have
identified superior responses for patients with frontal and
temporal seizure networks, compared with other regions,!?
leading to the “network theory” of ANT-DBS—that stimulating
the ANT, a node in the Papez circuit, has greater therapeutic
effects on seizure networks associated with this limbic network.
Long-term follow tracking of the SANTE cohort has reported
a median seizure frequency reduction of 56% at 2 years,
increasing to 69% at 5 years and 75% at 7 years.3

Beyond stimulation of the ANT, other subcortical and
thalamic structures have been identified and targeted for epilepsy
DBS. Two common off-label thalamic targets, the centromedian
(CM) nucleus and pulvinar, have been studied for generalized
and posterior quadrant epilepsies, respectively, with some
promising preliminary results.*°

Despite proven efficacy, epilepsy DBS has notable limita-
tions. Seizure freedom is rare, the latency to response is long, and
DBS does not work for all patients.” One major challenge is the
long latency and uncertain reliability of the clinical readout (patient
reported seizure diaries), which is compounded by patient
encounter intervals (roughly 3-6 months). This slow clinical
response prevents efficient tuning of stimulation parameters, in
contrast to DBS for conditions such as Parkinson disease, where
parameters can be optimized during a single visit. Similarly, the
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SEEG, including both passive recordings and active stimulation
protocols, which enable mapping and modulation of large-
scale brain networks. The capabilities of clinical sensing-
enabled DBS systems are reviewed. As device functionality and
biomarker discovery evolve, concerted translational efforts are
needed to realize a new paradigm of personalized DBS in
epilepsy.

Key Words: Neuromodulation, Single pulse electrical stimulation,
Chronic brain recordings, Adaptive stimulation, Thalamic sEEG.
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use of generic targets means that the stimulated thalamic subfield
may not optimally engage a patient’s specific seizure network.

Advances in device technology, evolving clinical
practices—including the growing interest in thalamic
sEEG—and biomarker development may address these DBS
limitations. The aim of this review was to summarize key
biomarkers for DBS in epilepsy and propose biomarker-informed
approaches to DBS for epilepsy.

NONINVASIVE SEIZURE NETWORK BIOMARKERS

Noninvasive biomarkers of seizure networks may improve
the characterization of corticothalamic networks involved in
epilepsy, informing patient candidacy and target selection for
DBS. Scalp EEG remains a fundamental tool for epilepsy
classification, distinguishing between focal and generalized
epilepsy. Seizure onset networks identified by scalp EEG,
combined with existing knowledge of thalamocortical circuits,
can help with DBS target selection.®° MRI plays a critical role in
defining the anatomical extent of structural abnormalities in
lesional epilepsy, while also assessing thalamic structures.!?
Functional and metabolic imaging may provide additional
insights into the involvement of subcortical structures in seizure
networks. For instance, interictal FDG-PET shows hypometab-
olism in the ANT in patients with temporal lobe epilepsy,
indicating potential dysfunction in the corticothalamic path-
ways.! =13 Similarly, interictal single-photon emission computed
tomography has shown interictal hypoperfusion in the temporal
lobe and ipsilateral thalamus in patients with refractory temporal
lobe epilepsy'# as well as in the thalamus of patients with frontal
lobe epilepsy and motor seizure semiology.!>

NETWORK-GUIDED DBS TARGET SELECTION

The ANT is the most thoroughly researched and only FDA-
approved target for epilepsy DBS. The ANT is part of the
thalamic anterior complex, a node of the Papez circuit, and

clinicalneurophys.com

Copyright © by the American Clinical Neurophysiology Society. Unauthorized reproduction of this article is prohibited.


mailto:Gregg.Nicholas@mayo.edu
mailto:Gregg.Nicholas@mayo.edu

a component of the limbic thalamus with strong efferent
projections to mesial and anterior frontal, and temporal re-
gions.!®17 The network theory of ANT-DBS suggests that this
target is best suited for frontotemporal seizure networks'® and, in
particular, for seizure networks with limbic system connectivity.
Prior fMRI-based functional connectivity work has shown that
ANT-DBS connectivity profiles differ between responders and
nonresponders, with greater positive functional connectivity to
the default mode network seen in responders.!® Subsequently,
a study fMRI-blood-oxygen-level-dependent (BOLD) signal
during active ANT-DBS fMRI further demonstrated modulation
of limbic and default mode network regions during high-
frequency stimulation, further characterizing the networks
engaged by ANT-DBS.2°

The CM nucleus, an off-label thalamic target, exhibits
strong connectivity with the basal ganglia and intrathalamic
pathways, as well as diffuse cortical connections, particularly to
the perirolandic sensorimotor cortex, premotor cortex, and
anterior cingulate cortex.?! Generalized epilepsy network map-
ping, derived from brain abnormalities in patients with idiopathic
generalized epilepsy (IGE) and the human connectome, demon-
strated that the CM nucleus has peak functional connectivity with
the IGE network.?? Several authors have demonstrated benefits
of CM-DBS for patients with IGE?® and Lennox—Gastaut
syndrome.?4-26 In the stimulation group of the ESTEL trial, the
primary outcome— patient-reported seizure diaries—did not
reach statistical significance; however, a reduction in electro-
graphic seizures on 24-hour ambulatory EEG was observed in the
secondary outcome.?® Network connectivity mapping, and EEG-
fMRI comparing IGE and Lennox—Gastaut syndrome net-
works,?’ suggest that there may be syndrome specific targets
for CM-DBS. Emerging computational imaging and field-
modeling methods show promise network-guided neuromodula-
tion to refine DBS—for example, a recent study combining
deterministic tractography and a biophysical modeling frame-
work to disambiguate DBS activation of neighboring fiber tracks
was able to predict behavioral change in response to central
thalamus DBS in nonhuman primates.?$

Another off-label thalamic target, the pulvinar nucleus, has
emerged as a potential target for treating posterior quadrant
epilepsy.®2?3® The PULSE trial reported improvements in
seizure severity and quality of life, alongside a nonsignificant
trend toward seizure reduction.®

THALAMIC STEREOTACTIC-EEG

The thalamus plays a critical role in seizure generation and
propagation,'-32 and recent work using thalamic sEEG has
delivered new insights into thalamic and subcortical ictal and
interictal ~electrophysiological ~dynamics in epilepsy.33-33
Research and clinical thalamic sampling during SEEG has rapidly
grown, and best practices continue to evolve.3%37 In a large series
of thalamic sEEG, Pizzo et al.3? found that in 86% of patients the
thalamus was involved during their focal seizures whereas. In
addition, other work has demonstrated variable thalamic nucleus
propagation patterns across patients undergoing multisite tha-
lamic sampling.>> More work is needed to determine the
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predictive value of thalamic seizure characterization during
sEEG for long-term response to thalamic DBS.

Unlike the cortex, the thalamus lacks a well-organized
columnar and laminar structure,?® which leads to lower ampli-
tude local field potential (LFP) amplitudes, and so thalamic
channels should be read at greater sensitivity compared with the
cortex. To improve the interpretability of thalamic SEEG data,
spectral analysis using Fast Fourier Transform (FFT) can be
used. By comparing ictal spectral activity with epochs recorded
during both wakefulness and sleep, we can better characterize the
frequency bands during seizure activity. These spectral features
can directly inform the ambulatory sensing parameters for
clinical DBS systems. Prior work has demonstrated the feasibility
of this method, using interictal and ictal thalamic SEEG spectral
signatures to guide DBS sensing parameters for ambulatory
seizure detection and lateralization.®

Stimulation during thalamic SEEG can provide important
complementary information to passive recordings of spontane-
ously occurring activity. Single pulse electrical stimulation and
the resulting thalamocortical-evoked potentials*° provides a mea-
surement of network effective connectivity (directed causal
influence between neural populations). Prior work has demon-
strated that effective connectivity between thalamic and cortical
sites is not always reciprocal,*! which has clear implications for
DBS target selection (early or maximal ictal activity in a given
thalamic nucleus does not necessarily indicate that stimulation of
that nucleus provides optimal engagement of the seizure
network). Thalamocortical-evoked potentials can be used to
demonstrate seizure network engagement by thalamic stimula-
tion. In addition, emerging work indicates that thalamocortical
effective connectivity and trials of high-frequency thalamic DBS
during sEEG can map seizure network engagement, suppress
[EDs (Fig. 1), modulate network excitability, and perhaps predict
response to chronic neuromodulation.4>—44

DBS TARGETING AND LEAD LOCALIZATION

The ANT can be directly visualized on MRI imaging
sequences, with particularly good visualization provided by
white-matter—nulled imaging sequences, such as the fast gray
matter acquisition T1 inversion recovery (FGATIR) sequence.
The ANT receives afferent projections from the mammillary
bodies through the mammillothalamic tract white matter bundle
and is separated from neighboring thalamic nuclei by the internal
medullary lamina, allowing for direct visualization of the
mammillothalamic tract and ANT on FGATIR sequences.*’
Emerging techniques such as 3T quantitative susceptibility
mapping also shows promise for direct ANT visualization.*¢
Prior work suggests a DBS “sweet-spot” around the anterior third
of the ANT and head of the mammillothalamic tract.47—4°

Targeting the CM nucleus has been enhanced by high-
contrast MRI sequences such as magnetization-prepared two
rapid acquisition gradient-echo (MP2RAGE).> MP2RAGE at 3T
yields uniform T1-weighted images with excellent gray—white
matter differentiation. Warren et al.> demonstrated that the CM
nucleus is distinctly hyperintense on MP2RAGE relative to
adjacent nuclei—the pulvinar, mediodorsal, and parafascicular
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FIG. 1. Thalamic stimulation during sEEG. A, Single pules stimulation delivered to that thalamus and the resulting thalamocortical-evoked

potentials can demonstrate if there is connectivity between the stimulation thalamic subfield and cortical regions of interest, such the
seizure onset zone as shown in this plot. B, Trial of high-frequency duty-cycle stimulation can produce acute desynchronization of seizure
network activity and suppression of IEDs during the on-phase of the duty cycle, as shown here, with on-phase marked by green lines. C, This
stimulation trials resulted in significant suppression of the IED rate in the on-phase versus off-phase of duty-cycle stimulation.

nuclei. More recently, work has demonstrated the feasibility of
direct visualization of the CM and parafascicular nuclei, using
the edge-enhancing gradient echo with multi-image coregistra-
tion and averaging (EDGE-MICRA) imaging method.>® The
habenula, a small epithalamic nucleus, is posterior, superior, and
medial relative to the CM nucleus and can assist with targeting.>!
As discussed above, CM-DBS targeting may be syndrome
specific, with prior work identifying distinct sweet-spots for
IGE?° and Lennox—Gastaut syndrome.>?

Advancements in MRI sequences (MP2RAGE and FGA-
TIR) and ultra-high-field imaging have also enabled direct
visualization of the pulvinar nucleus. Susceptibility-weighted
imaging accentuates iron-rich regions and fibrous septa, with
greater contrast at 7T, potentially delineating pulvinar subre-
gions.>3 Pulvinar appears darker than the adjacent CM on
MP2RAGE sequences, creating a visible interface.’ Similarly,
white-matter—nulled inversion recovery imaging (e.g., FGATIR)
can highlight gray matter differences between nuclei.>3

When direct MRI visualization is inadequate, atlas-based
techniques can aid DBS targeting.> Automated thalamus seg-
mentation methods>* and digital thalamic atlases can be non-
linearly warped into a patient’s MRI space, as described
previously.>-23-53

In addition, postoperative imaging is crucial to localize DBS
leads and select stimulation contacts. Typically, a postoperative
high-resolution CT coregistered to preoperative MRI can help to
identify contact proximity to target, for targets that can be
directly visualized.>® In addition, clinical and research pack-
ages®’ are available that provide automated imaging coregistra-
tion, lead localization, and thalamic atlas normalization tools to
enhance contact-target localization.

BIOMARKERS FOR DBS WITH SENSING

Clinical DBS Recording Capabilities

The clinical Medtronic Percept DBS system offers con-
strained chronic ambulatory brain recordings, with additional
functionality that is accessible by the physician programming
tablet during in-person visits. This Percept system provides
chronic ambulatory bipolar recordings (one recording channel
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per lead) of LFP power within a physician-selected 5-Hz wide
frequency band, saved in 10-minute averaged increments. Data
storage capacity ranges between 40 (Percept RC) and 60 days
(Percept PC), with overwriting of earlier data for extended
recording durations. These recordings require a sense-friendly
configuration, with bipolar sensing contacts bracketing one or
two monopolar stimulation contacts, allowing for common-mode
artifact rejection. Sense-friendly stimulation frequencies range
from 50 to 185 Hz, with stimulation rates at least 10 Hz higher
than the frequency band of interest. Events of interest can be
marked by the patient or caregiver using a patient programmer,
which saves an event timestamp to the device, and records a full-
spectrum FFT measurement (calculated over 30 seconds follow-
ing event mark; 100 event snapshot per lead storage capacity)
when the patient is in a sensing configured stimulation program.
Up to four distinct event types can be configured. Patient-marked
events will also trigger resumption of stimulation if an event is
marked during the off phase of duty-cycle stimulation. Recorded
data are accessible by the physician programming tablet during
in-person Visits.

During in-person encounters, the physician programming
tablet can acquire time-series recordings, sampled at 250 Hz,
from three bipolar pairs per lead when stimulation is off, or from
a single bipolar pair during sense-friendly stimulation.’® Fast
Fourier Transform frequency spectra can be acquired from each
bipolar pair across levels (6 per lead), as well as from directional
segments.

Chronic Ambulatory Seizure Detection

Previous work has shown that chronic LFP spectral
trends—such as those captured by the clinical Percept DBS
system—can detect and lateralize seizures in some individuals
with drug-resistant focal epilepsy. In a study using the investi-
gational Medtronic Summit RC+S system in patients with drug-
resistant mesial temporal lobe epilepsy implanted with bilateral
ANT and hippocampal electrodes capable of 250 Hz time-series
recordings, our group found that optimal seizure detection
occurred using Percept-like power-in-band features centered at
7.8 Hz (with 5 Hz bandwidth). Shorter-duration epochs out-
performed 10-minute averaged epochs. Notably, LFP power-in-
band consistently lateralized seizure onset, with maximal power
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in the thalamic lead ipsilateral to the hippocampal seizure
focus.3”

Subsequent work extended those findings from the investi-
gational system to the clinical Percept DBS system, demonstrat-
ing the feasibility of seizure detection and lateralization by the
clinical system3® (Fig. 2). In that case, nurse identified clinical
seizures during inpatient DBS recording were precisely coinci-
dent with peaks in the LFP power-in-band trends (again, 7.8 Hz
center frequency), and this ictal peak in LFP power was maximal
ipsilateral to the patient’s prior identified seizure network.?®
Work is ongoing to establish optimal protocols and identify
spectral signatures for epilepsy tracking by DBS with sensing
systems.>>%2 Aperiodic changes in thalamic LFPs, such as
a steeper 1/f slope, has been identified to differentiate ictal from
interictal states,®> and thalamic DBS recordings may enable
seizure forecasting.®3

Patient-reported seizure diaries are often unreliable,** and
digitally marking events with the patient programmer, with
associated FFT snapshot, and LFP spectral trends may improve
event tracking. Furthermore, patient event tracking, coincident
FFT spectral snapshot, and LFP trends, and be leveraged to guide
adaptive DBS, as evident in recent studies of adaptive DBS for
Parkinson disease.®® This method improves accuracy by aligning
stimulation adjustments with both electrophysiological signatures
and reports of subjective symptoms.©©

Interictal Recordings

Identifying contacts with abnormal electrophysiological
activity, such as IEDs, may indicate that a thalamic subfield is
involved in a pathological or seizure network. Identifying
such activity in DBS contacts could inform stimulation
contact and sensing channel selection, to best engage and
track seizure networks. Prior work has demonstrated that IED
amplitude differences between neighboring contacts and

hemispheres are evident in DBS time-series recordings®’

(Fig. 3). More work is needed to establish how best to use
interictal time series and spectral features to assess seizure
network involvement, and track network excitability and
seizure risk. Such biomarkers are needed for epilepsy—akin
to Parkinson disease beta-band activity®>—to guide adaptive
neuromodulation for epilepsy.

FUTURE DIRECTIONS: ADAPTIVE DBS, BIOMAR-
KER-TARGETED STIMULATION, SEIZURE RISK
FORECASTING, AND MANAGEMENT

OF COMORBIDITIES

The aim of adaptive DBS was to modulate epileptogenic
networks and suppress seizures by adjusting stimulation param-
eters in real time based on physiological signals or biomarkers.
Adaptive DBS is already an FDA-approved therapy for Parkin-
son disease—stimulation amplitude modulation directed by
changes in beta-band power®>—underscoring the need to estab-
lish biomarkers and stimulation protocols for adaptive DBS for
epilepsy.

Candidate biomarkers include the rate of IEDs, spectral
features, and evoked potential measures of excitability. Prior
work has shown that thalamic high-frequency stimulation can
acutely desynchronize seizure networks and modulate TED
rates,*> and modulate thalamocortical excitability.*?%° Prior work
has established the presence of circadian and multiday cycles of
seizure risk,®®7% with seizures occurring at a preferred phase in
the fluctuating rate of IEDs, and may enable seizure risk
forecasting. Importantly, studies have shown that ANT-DBS
modulates these seizure risk cycles, adding complexity to the
temporal dynamics of seizure risk.”! In this context, understand-
ing cycles in epilepsy will be crucial to track the impact of DBS
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FIG. 2. Chronic ambulatory thalamic seizure detection by a clinical DBS system. The patient is a young man with a developmental and

epileptic encephalopathy, drug-resistant epilepsy, and diffuse onset seizures, treated with bilateral centromedian nucleus DBS. A, Caregiver-
recorded seizure times reliably correspond to relative peaks in the DBS LFP power-in-band trends (5.3-to-10.3 Hz frequency band). One

event was captured without corresponding peak in LFP power, while four peaks in LFP power were without associated caregiver-reported
events, which may represent true seizures that were missed by caregivers. Gray bars indicate evening hours (10 pm—6 Am). B, corresponds to
marked inset from panel above. C, Significant circadian seizure phase locking is clearly evident in the 24-hour rose-plot. Gray arc corresponds
to evening hours (10 pm—6 Am). P-value calculated by the omnibus test. DBS, deep brain stimulation; LFP, local field potential; PLV, phase-

locking value, or R-value.
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FIG. 3. Time-series recordings by a clinical DBS system. The patient is a young man with left frontotemporal regional epilepsy treated with
ANT-DBS system. Data were acquired during a clinic visit by the physician programming tablet. A, Left and right ANT in blue and the
mammillothalamic tract in red. Renderings were generated using the Lead-DBS imaging package.®”:%® Top panel right is anterior, left is
posterior, up is superior; in bottom panel, the anterior—posterior axis is reversed. B, Model of implanted leads and the corresponding bipolar

recording time series. DBS, deep brain stimulation.

and to adaptively tune stimulation to each patient’s unique
seizure dynamics.

Emerging platforms that link implanted neuromodulation
system with brain sensing capabilities to a hand-held device with
bidirectional connectivity to the cloud allow for new electro-
physiological biomarker-triggered prompts to be given to patient
by a handheld device, to assess cognitive faculties and mood.
Continuous data streaming also allows for tracking of sleep.
These behavioral data points are critical to characterize and track
common epilepsy comorbidities—mood, memory, and
sleep—and may provide new insights into epilepsy and thera-
peutic practice.”?

CONCLUSION

Emerging DBS biomarkers—from thalamic SEEG, imaging,
and chronic DBS sensing—offer new opportunities to guide
target selection, optimize parameters, detect seizures, monitor
network excitability, and enable adaptive stimulation. Continued
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efforts are needed to realize the potential of these advances for
personalized DBS in epilepsy.
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