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Purpose of review

Summarize evidence on Developmental and Epileptic Encephalopathies (DEEs) treatments focusing on new
and emerging pharmacologic therapies (see Video, http://links.lww.com/CONR/A61, Supplementary
Digital Content 1, which provides an overview of the review).

Recent findings

Advances in the fields of molecular genetics and neurobiology have led to the recognition of underlying
pathophysiologic mechanisms involved in an increasing number of DEEs that could be targeted with
precision therapies or repurposed drugs, some of which are currently being evaluated in clinical trials.
Prompt, optimal therapy is critical, and promising therapies approved or in clinical trials for tuberous
sclerosis complex, Dravet and Lennox–Gastaut Syndromes including mammalian target of rapamycin
inhibitors, selective membrane channel and antisense oligonucleotide modulation, and repurposed drugs
such as fenfluramine, stiripentol and cannabidiol, among others, may improve seizure burden and
neurological outcomes. There is an urgent need for collaborative efforts to evaluate the efficacy and safety
of emerging DEEs therapies.

Summary

Development of new therapies promise to address unmet needs for patients with DEEs, including
improvement of neurocognitive function and quality of life.
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INTRODUCTION

Developmental and epileptic encephalopathies (DEEs)
are a group of heterogeneous disorders characterized
by drug-resistant epilepsy and electrographic abnor-
malities that impede brain development and lead to
severe cognitive, behavioral, and/or motor impair-
ments. There is both developmental encephalopathy,
caused directly by the underlying etiology, and
epileptic encephalopathy where epileptic activity itself
causes or further exacerbates the neurocognitive
dysfunction or decline [1,2]. DEEs may be classified
by syndrome (age of onset, seizure type, distinctive
Electroencephalogram (EEG) patterns) or etiology
(see Supplementary Tables 1, http://links.lww.com/
CONR/A62 and 2, http://links.lww.com/CONR/A63,
which provide an overview of DEEs).

Furthermore, DEEs are frequently associated
with other medical (e.g., gastrointestinal disturban-
ces, recurrent pneumonias) and comorbid neuro-
psychiatric conditions including autism spectrum
disorder [3,4], and movement or behavioral
t © 2022 Wolters Kluwe

rs Kluwer Health, Inc. All rights rese
disorders [5,6] that markedly impact the quality of
life, morbidity and mortality.

The overall prognosis of DEEs is poor with
increased mortality [7,8]; however, prompt recogni-
tion and treatment may lead to improved neuro-
cognitive function [9]. Treatment of DEE-associated
seizures generally entails a broad spectrum of med-
ications, surgery, or dietary therapy. In recent years,
research has focused on understanding the underly-
ing pathophysiologic mechanisms to develop preci-
sion (targeted to pathogenesis) therapies with the
goal to prevent or ameliorate neurocognitive
r Health, Inc. All rights reserved.
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KEY POINTS

� Early recognition and intervention in developmental
and epileptic encephalopathies are crucial as it can
impact neurological outcomes and may improve quality
of life.

� In the era of precision therapies, identification of
underlying etiology will likely be most impactful on
choosing optimal treatment for DEEs patients.

� Multinational collaborative efforts are critical to
evaluate the safety and efficacy of evolving precision
and nontargeted therapies.

Seizure disorders
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deficits. In this review, we summarize evidence on
DEE treatments focusing on new and emerging
pharmacologic therapies.
GOALS OF TREATMENT

The main goals of treatment are to improve seizure
control and alleviate or prevent associated comor-
bidities to maximize quality of life. In many DEEs,
complete seizure freedom is not feasible. Rather,
reduction or alleviation of the most problematic
seizure type(s) (while accepting some degree of less
severe seizures) and avoidance of marked medica-
tion side effects are the priority.

With some DEEs, such as Lennox–Gastaut syn-
drome (LGS), there is a window between initial
presentation and full expression, raising the possi-
bility that early intervention may ameliorate the
course in some cases [10]. However, improved sei-
zure control does not necessarily lead to recovery of
cognitive development. When considering addition
of therapies, those that have had little impact on
seizure control should be tapered. In appropriate
candidates with DEE, epilepsy surgery is an impor-
tant option as it may improve overall development
and quality of life [11,12]. Finally, a multidisciplin-
ary approach for comorbidity management and a
network of support for families and caregivers
is essential.
TREATMENTS

Precision therapies

Advances in the field of molecular genetics have
been crucial in improving our understanding of the
genetic basis of DEEs. In recent years, next-genera-
tion sequencing has led to the discovery of numer-
ous genes implicated in the development of these
disorders, providing essential information to guide
treatment approaches and deliver accurate genetic
 Copyright © 2022 Wolters Kluwer H
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counseling to patients and families. Although the
genetic landscape in DEEs is extensive, identifying
the genetic etiology has served as foundation for
ongoing development of precision therapies as well
as disease-specific treatments (Table 1, Supplemen-
tary Table 3, http://links.lww.com/CONR/A64) for
certain DEEs [13–29,30

&

,31–36
&

,37–46,47
&

,48–54].

Drugs targeting underlying pathogenic
mechanism

Everolimus and Sirolimus are mammalian target of
rapamycin (mTOR) inhibitors which have been eval-
uated for tuberous sclerosis complex (TSC) and
other mTORopathies [14,55]. mTOR is comprised
of two intracellular signaling complexes, mTOR
complex 1 (mTORC1) and 2 (mTORC2) [56], which
are particularly important in the nervous system as
they regulate neurogenesis, neural activity, and syn-
aptic transmission. Upstream regulation of this
pathway involves the complex hamartin-tuberin,
encoded by TSC1 and TSC2 genes, respectively,
which inhibits the GTP-binding protein Rheb and
subsequently mTORC1, leading to decreased cell
growth and metabolism [57].

Everolimus emerged as a promising therapeutic
option in TSC. Although initially approved for man-
agement of subependymal giant cell astrocytoma
and renal angiomyolipoma [55,58], in 2018 the
US Food and Drug Administration (FDA) approved
its use as adjunctive treatment in patients over
2 years of age with TSC-associated focal-onset seiz-
ures, based on the phase 3 EXIST-3 clinical trial. TSC
patients with focal refractory epilepsy (N¼366)
were randomized to three arms (low or high trough
concentrations of Everolimus or placebo), with Ever-
olimus demonstrating significant seizure reduction
compared to placebo (placebo 14.9% {95% CI 0.1–
21.7} vs. low trough arm 29.3% {95% CI: 18.8, 41.9;
P¼0.003}, and high trough arm 39.6% {95% CI: 35,
48.7; P¼0.001) [13].

Channel subtype-specific modulators (i.e., sodium
and potassium) play a key role in initiation and
propagation of action potentials in neurons. In dis-
orders such as SCN8A-DEE and KCNQ2-DEE, modu-
lation of these channels can reduce seizures (e.g.
phenytoin or other sodium channel blockers in gain
of function SCN2A, SCN8A and SCN1A [59,60]) and
very selective modulators are being developed
which may have greater benefit and fewer side
effects than nonselective therapies [52]. Novel chan-
nel subtype-specific modulators are detailed in
Table 1.

Memantine is a N-methyl-D-aspartate receptor
(NMDAR) antagonist recently used in GRIN2A-asso-
ciated DEEs [23,61]. GRIN2A encodes for a subunit of
the NMDAR, and variants have been identified in
ealth, Inc. All rights reserved.
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patients with D/EE-SWAS [62]. Future studies are
needed to determine its efficacy, safety, and phar-
macokinetics in these disorders.

Antisense oligonucleotide modulation

Antisense oligonucleotide (ASO) modulation is a prom-
ising therapy that targets altered splicing in the
precursor messenger RNA (mRNA), ultimately pro-
moting the generation of productive mRNA [63].
Dravet animal studies identified an ASO that
increased expression of productive SCN1A transcript
in both human cell lines and mouse brains using
Targeted Augmentation of Nuclear Gene Output
technology, leading to increased production of
NaV1.1 protein, with reduction of electrographical
seizures and sudden unexpected death in epilepsy
[64

&

]. With promising preclinical data, STK-001
emerged as a new investigational ASO for DS, which
is currently being evaluated in a multicenter, open-
label clinical trial [65].

Genetic therapies

The SCN1A gene is too large to incorporate into a
viral vector. In Dravet mice, introduction of an
adenovirus vector containing a promoter of SCN1A
led to increased expression of sodium NaV1.1 chan-
nels with reduction in frequency and severity of
spontaneous seizures, and prolonged survival [66].
ETX101 is a promising gene therapy for Dravet
Syndrome (DS) that will likely begin clinical trials
shortly. Unlike ASO therapies, which will need to be
administered periodically to maintain efficacy, gene
therapy is more ’permanent’, requiring only a
single administration.

Another precision genetic therapy is Ataluren,
which reads through premature nonsense stop sig-
nals on the mRNA to promote full length, functional
proteins. However, this therapy, if efficacious,
would be appropriate only for the subset of cases
of Dravet syndrome with pathogenic nonsense
SCN1A variants, as it acts on translation and does
not modify transcription or mRNA stability. Unfor-
tunately, a small phase 2 clinical trial in 7 patients
with DS with underlying nonsense mutations
showed that Ataluren was not effective in reducing
seizure frequency, improving cognitive, motor or
behavioral function and did not improve quality
of life [67].

Immune therapies

Anakinra is recombinant human interleukin-1
receptor antagonist (IL-1RA) targeting IL-1a and
IL-1b [68]. In addition to promoting inflammation,
IL-1b is a cytokine with ictogenic properties, and
its overexpression in neuroglial cells has been
 Copyright © 2022 Wolters Kluwe

1350-7540 Copyright � 2022 Wolters Kluwer Health, Inc. All rights rese
documented in animal models with refractory
epilepsy [69]. Febrile Infection-Related Epilepsy
Syndrome (FIRES) has been associated with
decreased expression of intracellular IL-1RA iso-
forms as well as functional deficiency in the IL-
1RA inhibitory activity [70

&

]. Several reports sug-
gested potential efficacy in FIRES [24,25]. A recent
multicenter retrospective cohort study of 25 chil-
dren identified a subset whose seizure frequency
was measured immediately before and one week
after administration of Anakinra and demonstrated
reduction of>50% in 11/15 patients. Earlier initia-
tion of Anakinra was also associated with improved
short-term outcomes (e.g., decreased duration
of mechanical ventilation and length of hospital
stay) [26].

Metabolic therapies

Metabolic disorders are uncommon but important
causes that require prompt recognition and inter-
vention, if treatment is available. Table 2 shows
therapeutic approaches for specific metabolic disor-
ders in pediatric patients [71–83].
Not targeted to pathogenesis
Fenfluramine

Use in DS

Fenfluramine was initially used in photosensitive,
self-induced epilepsy [34] but, in 1997 was pulled
from the market after reports of cardiac valvulop-
athy and pulmonary hypertension in persons using
it for management of obesity at doses up to 220 mg/
d, in combination with phentermine [84]. Nonethe-
less, a royal decree in Belgium granted approval for
compassionate use in DS, and this small cohort
demonstrated significant reductions in seizure fre-
quency, without evidence of cardiopulmonary dis-
ease at low doses [31,35]. Efficacy was established in
two multicenter, randomized, double-blind, pla-
cebo-controlled clinical trials. The first evaluated
add-on fenfluramine to existing therapies without
stiripentol for the treatment of convulsive seizures
in DS. Fenfluramine 0.7 mg/kg/day showed a 62.3%
greater reduction in mean monthly convulsive sei-
zure frequency (95% CI 47.7–72.8, P<0.0001), and
0.2 mg/kg/day showed a 32.4% reduction in mean
monthly convulsive seizure frequency (95% CI 6.2–
52.3, P¼0.0209) compared with placebo [33

&

]. The
second evaluated add-on fenfluramine (0.4 mg/kg/
day) to regimens containing stiripentol, and dem-
onstrated a 54.0% (95% CI, 35.6–67.2%; P<0.001)
greater reduction in mean monthly convulsive
r Health, Inc. All rights reserved.
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seizure frequency than those receiving placebo
[36

&

]. Fenfluramine was well tolerated with no
observed valvular heart disease or pulmonary arte-
rial hypertension [85

&

]. In June 2020, Fenfluramine
was approved by the US FDA for treatment of seiz-
ures in DS patients aged 2 years and older.

Use in other epilepsy syndromes

Knupp et. al conducted a similarly designed, ran-
domized, placebo-controlled trial of add-on fenflur-
amine (0.7 mg/kg/day) vs. placebo in LGS that met
its primary end-point, with fenfluramine 0.7 mg/kg/
day demonstrating with a 19.9% greater reduction
in drop seizures compared to placebo. It was also
highly effective in reducing generalized tonic-clonic
seizures by 46% and 58% in the 0.7 mg/kg/day and
0.2 mg/kg/day fenfluramine groups respectively,
compared to worsening of 3.7% in the placebo
group [37]. Small open-label studies have also sug-
gested efficacy in CDKL5 [39] and Sunflower syn-
drome [38].

Stiripentol

Stiripentol (STP) is approved as adjunctive therapy
for DS in Europe, Canada, Japan and was approved
in the US in 2018. Following a large study evaluating
efficacy of stiripentol in a diverse group of epilepsies,
which documented particular efficacy in DS [40], a
small, double-blind, randomized, placebo-con-
trolled trial of add-on STP (50 mg/kg/day) vs. pla-
cebo was performed in children with DS who had
inadequate seizure control on valproate and cloba-
zam. After two months of treatment, 71% in the STP
arm compared to 5% on the placebo arm were
responders [41]. A second small study of similar
design in Italy showed a response rate of 66.7%
on STP vs. 9.1% on placebo [42]. An important
consideration with STP is that when used together
with clobazam, STP increases clobazam level
approximately two-fold and norclobazam levels by
three to five-fold, thus clobazam dose should be
reduced if STP is added [86].

Cannabidiol

The therapeutic value of cannabidiol (CBD)-con-
taining products for epilepsy became the focus of
research in recent years and led to development of a
pharma-grade CBD preparation named Epidiolex/
Epidyolex (>98% CBD).

Use in DS

In 2018, the FDA, and in 2019, the European Medi-
cine Agency approved the use of CBD for treatment
of seizures in DS, based on a double-blind, random-
ized controlled trial. 120 children and young adults
 Copyright © 2022 Wolters Kluwe
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with DS aged two and older with drug-resistant
seizures were randomly assigned to receive add-on
CBD (20 mg/kg/d) or placebo over a 14-week treat-
ment period. The median percentage reduction in
convulsive seizure frequency was 38.9% with CBD
vs. 13.3% with placebo (P<0.01) [44]. In a subse-
quent open-label extension study, the median
reduction from baseline in monthly seizure fre-
quency assessed in 12-week periods up to week 48
ranged from 38–44% for convulsive seizures and
39–51% for total seizures [45].

Use in Lennox–Gastaut syndrome

In the two LGS double-blind placebo-controlled
trials, patients (n¼171 and 225) were administered
add-on CBD at 20 mg/kg/day [48] or 10 or 20 mg/kg/
day [87] over a 14-week treatment period. For CBD at
20 mg/kg/day, the median percentage reduction in
total seizure frequency was 38.4–41% (vs. 13.7–
18.5% for placebo), and monthly median decrease
in drop seizures was reported to be 42–44% (vs. 17–
22% for placebo). At 10 mg/kg/day, the median
percentage reduction in total seizure frequency
was similar at 36.4% (vs. 18.5% for placebo), and
monthly median decrease in drop seizures was 37%
(vs. 17% placebo).

An important consideration with CBD is its
potential interaction with other antiseizure medi-
cations. CBD increases both clobazam (by 60�80%)
and norclobazam (by 500�300%), and thus, reduc-
tion of clobazam dose may be needed when adding
CBD [88]. Similarly, concomitant use with valproic
acid can lead to elevated liver enzymes and therefore
should be monitored closely [89].
IMPROVING TREATMENT FOR CHILDREN
WITH DEVELOPMENTAL AND EPILEPTIC
ENCEPHALOPATHIEs: THE WAY
FORWARD

Making a precise diagnosis in a timely
manner

The most critical aspect in choosing the optimal
treatment is accurately defining seizure type(s), syn-
drome (if present) and etiology. In an infant or child
presenting with clinical features suggesting an
evolving DEE, a careful clinical history and physical
examination, as well as interictal (þ/- ictal) EEG
recordings, state-of-the-art imaging, genetic studies
(epilepsy gene panel or whole exome/genome
sequencing) and selected metabolic investigations
should be performed early, which may be facilitated
by early consultation with a comprehensive epilepsy
center.
r Health, Inc. All rights reserved.
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Children with DEEs most commonly present
with multiple seizure types. Medications should
be chosen to target the most impactful seizure type,
but ideally would also alleviate other seizure types.
In many DEEs, both generalized and focal-onset
seizures occur, and caution must be taken to avoid
therapies that may help one seizure type, but
markedly worsen another.

Although many trials have focused on specific
syndromes [33

&

,41,87,90–92], as we move into the
era of precision therapies, identification of underly-
ing etiology will likely be most impactful on choos-
ing optimal treatment. The hope is that specific
treatments can be designed which target the specific
pathogenic mechanisms leading to both seizures, as
well as the developmental encephalopathy.
Choosing therapy that specifically targets the
underlying pathogenic mechanism or
etiology

In DEEs due to a surgically resectable, focal lesion,
early surgery can be critically important not only to
alleviate seizures, but also to prevent progressive
encephalopathy and maximize long-term develop-
mental outcome [93,94].

The causal role of specific pathogenic genetic
variants is well recognized. However, more work is
needed to understand the functional implications of
such variants to select treatment [95,96

&

]. For exam-
ple, sodium channel blockers are contraindicated in
DS, which is due to severe loss of function SCN1A
variants [86]. Yet, other early onset epileptic enceph-
alopathies due to gain of function sodium channel
variants may respond very favorably [96

&

].
Metabolic disorders may be amenable to specific

therapies (Table 2) and prompt initiation of targeted
therapies is crucial to prevent irreversible neurological
decline.
Developing novel animal models of etiology-
specific epilepsies to allow rapid testing of
new compounds

Over the last decade, new animal models have been
developed which are powerful tools for epilepsy
research. One of the most important models has been
the zebrafish, a vertebrate with a fully sequenced
genome and significant genetic homology with
humans [97]. These animals can be genetically engi-
neered to create specific models that recapitulate
human genetic epilepsies [98]. Seizures can be moni-
tored both behaviorally and electrophysiologically.
Such models will facilitate rapid throughput drug
screening in a much more economical manner than
using mammalian models such as rodents.
 Copyright © 2022 Wolters Kluwer H
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Multicenter collaboration amongst clinicians
and lay organizations

Although collectively the DEEs comprise a signifi-
cant proportion of children with drug-resistant epi-
lepsy, each individual DEE is rare – nearly all meet
criteria for orphan conditions. Numerous rare epi-
lepsy organizations have been founded by families
of affected individuals, often in collaboration
with physicians and have not only significantly
enhanced our understanding of these rare DEEs
but provided an invaluable resource to newly diag-
nosed families. These organizations provide critical
feedback on where research should be focused [99],
and access to larger cohorts of persons with these
rare conditions, for possible clinical trials. Strong
multicenter and international collaboration will be
key to enhancing our understanding of how best to
treat these conditions.
CONCLUSION

DEEs are a group of heterogeneous disorders associ-
ated with poor neurological outcomes significant
comorbidities. A tailored approach is needed to
modify clinical course and patients’ outcomes. Mul-
tinational collaborative efforts are needed to evalu-
ate the safety and efficacy of evolving precision and
nontargeted therapies.
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